Efficient qPCR estimation and discrimination of airborne inoculum of Leptosphaeria maculans and L. biglobosa, the causal organisms of phoma leaf spotting and stem canker of oilseed rape
BACKGROUND
Detection of the inoculum of phytopathogens greatly assists in the management of diseases, but is difficult for pathogens with airborne fungal propagules. Here, we present experiments to determine the abundance and distribution frequencies of the ascospores of Leptosphaeria (Plenodomus) species that were collected on the tapes of volumetric Hirst-type traps near oilseed rape fields in Poznan, Poland and Harpenden, UK. Fungal detection and species discrimination were achieved using a SYBR-Green quantitative polymerase chain reaction (qPCR) with two different pairs of primers previously reported to differentiate Leptosphaeria maculans (Plenodomus lingam) or L. biglobosa (P. biglobosus).
RESULTS
Detection was successful even at fewer than five spores per m3 of air. The primer pairs differed in the correlation coefficients obtained between DNA yields and the daily abundance of ascospores that were quantified by microscopy on duplicate halves of the spore trap tapes. Important differences in the specificity and sensitivity of the published SYBR-Green assays were also found, indicating that the Liu primers did not detect L. biglobosa subclade ‘canadensis’, whereas the Mahuku primers detected L. biglobosa subclade ‘canadensis’ and also the closely related Plenodomus dezfulensis.
期刊介绍:
Pest Management Science is the international journal of research and development in crop protection and pest control. Since its launch in 1970, the journal has become the premier forum for papers on the discovery, application, and impact on the environment of products and strategies designed for pest management.
Published for SCI by John Wiley & Sons Ltd.