Dunja Šilić, Biserka Cetina-Čižmek, Steven A. Ross, Andrew Hurt, Milan Antonijevic and Dennis Douroumis*,
{"title":"离子共晶合成的热挤压工艺优化","authors":"Dunja Šilić, Biserka Cetina-Čižmek, Steven A. Ross, Andrew Hurt, Milan Antonijevic and Dennis Douroumis*, ","doi":"10.1021/acs.cgd.3c00773","DOIUrl":null,"url":null,"abstract":"<p >Cocrystals are multicomponent crystalline forms that are an appealing alternative to modify undesirable properties of drug substances, such as poor solubility and stability. Hot-melt extrusion (HME), a solvent-free, robust, and scalable technology, has been proven to be a suitable approach for cocrystallization of several drug-coformer pairs. However, HME has been mainly implemented for the synthesis of molecular cocrystals when most of the marketed products are manufactured in the form of ionic cocrystals. In this study, the synthesis of extruded fluoxetine HCl-succinic acid cocrystals was investigated using different screw configurations. Ionic cocrystals manufactured by HME showed complete transformation of the drug-coformer pair with high purity, improved intrinsic dissolution rates, and long-term storage stability when compared to their counterparts produced by solvent evaporation.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"23 10","pages":"7355–7364"},"PeriodicalIF":3.2000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Hot-Melt Extrusion Processing for the Synthesis of Ionic Cocrystals\",\"authors\":\"Dunja Šilić, Biserka Cetina-Čižmek, Steven A. Ross, Andrew Hurt, Milan Antonijevic and Dennis Douroumis*, \",\"doi\":\"10.1021/acs.cgd.3c00773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cocrystals are multicomponent crystalline forms that are an appealing alternative to modify undesirable properties of drug substances, such as poor solubility and stability. Hot-melt extrusion (HME), a solvent-free, robust, and scalable technology, has been proven to be a suitable approach for cocrystallization of several drug-coformer pairs. However, HME has been mainly implemented for the synthesis of molecular cocrystals when most of the marketed products are manufactured in the form of ionic cocrystals. In this study, the synthesis of extruded fluoxetine HCl-succinic acid cocrystals was investigated using different screw configurations. Ionic cocrystals manufactured by HME showed complete transformation of the drug-coformer pair with high purity, improved intrinsic dissolution rates, and long-term storage stability when compared to their counterparts produced by solvent evaporation.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"23 10\",\"pages\":\"7355–7364\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.3c00773\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.3c00773","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimization of Hot-Melt Extrusion Processing for the Synthesis of Ionic Cocrystals
Cocrystals are multicomponent crystalline forms that are an appealing alternative to modify undesirable properties of drug substances, such as poor solubility and stability. Hot-melt extrusion (HME), a solvent-free, robust, and scalable technology, has been proven to be a suitable approach for cocrystallization of several drug-coformer pairs. However, HME has been mainly implemented for the synthesis of molecular cocrystals when most of the marketed products are manufactured in the form of ionic cocrystals. In this study, the synthesis of extruded fluoxetine HCl-succinic acid cocrystals was investigated using different screw configurations. Ionic cocrystals manufactured by HME showed complete transformation of the drug-coformer pair with high purity, improved intrinsic dissolution rates, and long-term storage stability when compared to their counterparts produced by solvent evaporation.
期刊介绍:
The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials.
Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.