{"title":"具有双相B20晶体结构的磁性高熵合金的磁性行为研究","authors":"Siwei Tang, Haonan Dong, Zhe Huang, Baishan Chen, Haiguo Tang","doi":"10.1007/s10948-023-06610-8","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid advancement of big data, artificial intelligence, and cloud computing technologies has led to a significant increase in demand for high-density magnetic storage. High-entropy alloys offer better control over the properties of magnetic storage materials, allowing for a wider range of magnetic configurations. In this study, a five-membered magnetic alloy was created using powder metallurgy. It was revealed that both FeCrCoSiGe and FeMnCoSiGe alloys are dual-phase high-entropy alloys consisting of B20 CoGe- and FeSi-based phases. The study also demonstrated an interesting “kink” feature observed in the temperature-dependent magnetization of FeCrMnSiGe that suggests a potential association with helimagnetism. The helimagnetism is from the intrinsic helical ferromagnetism in the CoGe matrix phase and varies with the magnetic interactions due to the doped atoms. Furthermore, the temperature-dependent magnetization showed that replacing chromium (Cr) with cobalt (Co) could potentially reduce the magnetization transition to approximately 60 K. A complete substitution of chromium with manganese (Mn) could also alter the magnetic transition behavior. FeCrMnSiGe, FeCrCoSiGe, and FeMnCoSiGe were identified as soft magnets based on their field-dependent magnetization. The magnetic properties could be adjusted by modifying the composition and lattice distortion of the alloy. This study has the potential to aid in the development of a new material system with an adjustable chiral magnetic structure for spintronic memory devices.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"36 7-9","pages":"1673 - 1682"},"PeriodicalIF":1.6000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Magnetic Behavior of a Magnetic High-Entropy Alloy with Dual-Phase B20 Crystal Structure\",\"authors\":\"Siwei Tang, Haonan Dong, Zhe Huang, Baishan Chen, Haiguo Tang\",\"doi\":\"10.1007/s10948-023-06610-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rapid advancement of big data, artificial intelligence, and cloud computing technologies has led to a significant increase in demand for high-density magnetic storage. High-entropy alloys offer better control over the properties of magnetic storage materials, allowing for a wider range of magnetic configurations. In this study, a five-membered magnetic alloy was created using powder metallurgy. It was revealed that both FeCrCoSiGe and FeMnCoSiGe alloys are dual-phase high-entropy alloys consisting of B20 CoGe- and FeSi-based phases. The study also demonstrated an interesting “kink” feature observed in the temperature-dependent magnetization of FeCrMnSiGe that suggests a potential association with helimagnetism. The helimagnetism is from the intrinsic helical ferromagnetism in the CoGe matrix phase and varies with the magnetic interactions due to the doped atoms. Furthermore, the temperature-dependent magnetization showed that replacing chromium (Cr) with cobalt (Co) could potentially reduce the magnetization transition to approximately 60 K. A complete substitution of chromium with manganese (Mn) could also alter the magnetic transition behavior. FeCrMnSiGe, FeCrCoSiGe, and FeMnCoSiGe were identified as soft magnets based on their field-dependent magnetization. The magnetic properties could be adjusted by modifying the composition and lattice distortion of the alloy. This study has the potential to aid in the development of a new material system with an adjustable chiral magnetic structure for spintronic memory devices.</p></div>\",\"PeriodicalId\":669,\"journal\":{\"name\":\"Journal of Superconductivity and Novel Magnetism\",\"volume\":\"36 7-9\",\"pages\":\"1673 - 1682\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superconductivity and Novel Magnetism\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10948-023-06610-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-023-06610-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Exploring the Magnetic Behavior of a Magnetic High-Entropy Alloy with Dual-Phase B20 Crystal Structure
The rapid advancement of big data, artificial intelligence, and cloud computing technologies has led to a significant increase in demand for high-density magnetic storage. High-entropy alloys offer better control over the properties of magnetic storage materials, allowing for a wider range of magnetic configurations. In this study, a five-membered magnetic alloy was created using powder metallurgy. It was revealed that both FeCrCoSiGe and FeMnCoSiGe alloys are dual-phase high-entropy alloys consisting of B20 CoGe- and FeSi-based phases. The study also demonstrated an interesting “kink” feature observed in the temperature-dependent magnetization of FeCrMnSiGe that suggests a potential association with helimagnetism. The helimagnetism is from the intrinsic helical ferromagnetism in the CoGe matrix phase and varies with the magnetic interactions due to the doped atoms. Furthermore, the temperature-dependent magnetization showed that replacing chromium (Cr) with cobalt (Co) could potentially reduce the magnetization transition to approximately 60 K. A complete substitution of chromium with manganese (Mn) could also alter the magnetic transition behavior. FeCrMnSiGe, FeCrCoSiGe, and FeMnCoSiGe were identified as soft magnets based on their field-dependent magnetization. The magnetic properties could be adjusted by modifying the composition and lattice distortion of the alloy. This study has the potential to aid in the development of a new material system with an adjustable chiral magnetic structure for spintronic memory devices.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.