D. Baimukhambetova, A. K. Gatin, S. A. Ozerin, M. V. Grishin
{"title":"石墨表面合成铂纳米粒子与氧化亚氮的相互作用","authors":"D. Baimukhambetova, A. K. Gatin, S. A. Ozerin, M. V. Grishin","doi":"10.1134/S1061933X23600392","DOIUrl":null,"url":null,"abstract":"<div><div><h3>\n <b>Abstract</b>—</h3><p>Heterogeneous catalytic reactions involving nitrous oxide (N<sub>2</sub>O) are of great interest for medicine, technology, and ecology. The goal of this work is to determine the features of adsorption of N<sub>2</sub>O molecules followed by their interaction with a catalytic system based on metal nanoparticles at room temperature. Scanning tunneling microscopy and spectroscopy, as well as Auger spectroscopy, have been employed to identify the results and products of the adsorption of nitrous oxide on the surface of individual Pt nanoparticles synthesized on highly oriented pyrolytic graphite. It has been shown that, at short exposures, oxygen atoms resulting from dissociative adsorption oxidize the surface of nanoparticles only near the platinum–graphite interface. As the exposure increases, the entire surface of the nanoparticles is covered with oxide. Thus, it has been shown that the adsorption properties of the surface of the platinum nanoparticles on graphite are not the same, and this fact provides the possibility to carry out different chemical reactions on different surface regions, thereby increasing the efficiency of the catalytic system as a whole.</p><figure><div><div><div><picture><img></picture></div></div></div></figure></div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interaction of Platinum Nanoparticles Synthesized on Graphite with Nitrous Oxide\",\"authors\":\"D. Baimukhambetova, A. K. Gatin, S. A. Ozerin, M. V. Grishin\",\"doi\":\"10.1134/S1061933X23600392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><h3>\\n <b>Abstract</b>—</h3><p>Heterogeneous catalytic reactions involving nitrous oxide (N<sub>2</sub>O) are of great interest for medicine, technology, and ecology. The goal of this work is to determine the features of adsorption of N<sub>2</sub>O molecules followed by their interaction with a catalytic system based on metal nanoparticles at room temperature. Scanning tunneling microscopy and spectroscopy, as well as Auger spectroscopy, have been employed to identify the results and products of the adsorption of nitrous oxide on the surface of individual Pt nanoparticles synthesized on highly oriented pyrolytic graphite. It has been shown that, at short exposures, oxygen atoms resulting from dissociative adsorption oxidize the surface of nanoparticles only near the platinum–graphite interface. As the exposure increases, the entire surface of the nanoparticles is covered with oxide. Thus, it has been shown that the adsorption properties of the surface of the platinum nanoparticles on graphite are not the same, and this fact provides the possibility to carry out different chemical reactions on different surface regions, thereby increasing the efficiency of the catalytic system as a whole.</p><figure><div><div><div><picture><img></picture></div></div></div></figure></div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061933X23600392\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X23600392","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Interaction of Platinum Nanoparticles Synthesized on Graphite with Nitrous Oxide
Abstract—
Heterogeneous catalytic reactions involving nitrous oxide (N2O) are of great interest for medicine, technology, and ecology. The goal of this work is to determine the features of adsorption of N2O molecules followed by their interaction with a catalytic system based on metal nanoparticles at room temperature. Scanning tunneling microscopy and spectroscopy, as well as Auger spectroscopy, have been employed to identify the results and products of the adsorption of nitrous oxide on the surface of individual Pt nanoparticles synthesized on highly oriented pyrolytic graphite. It has been shown that, at short exposures, oxygen atoms resulting from dissociative adsorption oxidize the surface of nanoparticles only near the platinum–graphite interface. As the exposure increases, the entire surface of the nanoparticles is covered with oxide. Thus, it has been shown that the adsorption properties of the surface of the platinum nanoparticles on graphite are not the same, and this fact provides the possibility to carry out different chemical reactions on different surface regions, thereby increasing the efficiency of the catalytic system as a whole.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.