{"title":"基于拓扑优化和Lasso正则化的损伤识别","authors":"Ryo Sugai, Akira Saito, Hidetaka Saomoto","doi":"10.1007/s00419-023-02464-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a damage identification method for small damages based on topology optimization and Lasso regularization. In particular, this work extends the applicability of the previously developed damage identification method using frequency response functions and topology optimization, by conducting rigorous parametric studies in terms of damping, measurement noise, and damage size. It is shown that the presented method successfully identifies small damaged regions with a reasonable accuracy. To evaluate the effectiveness of the proposed method, we applied the method to identify the damages in cantilevered plates that are subject to static or dynamic loads. The method succeeded in detecting the locations and shapes of damages more accurately than the method without Lasso regularization. Furthermore, in most cases we have considered, spurious damages generated during the optimization were successfully suppressed.\n</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"93 10","pages":"3827 - 3850"},"PeriodicalIF":2.2000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damage identification based on topology optimization and Lasso regularization\",\"authors\":\"Ryo Sugai, Akira Saito, Hidetaka Saomoto\",\"doi\":\"10.1007/s00419-023-02464-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present a damage identification method for small damages based on topology optimization and Lasso regularization. In particular, this work extends the applicability of the previously developed damage identification method using frequency response functions and topology optimization, by conducting rigorous parametric studies in terms of damping, measurement noise, and damage size. It is shown that the presented method successfully identifies small damaged regions with a reasonable accuracy. To evaluate the effectiveness of the proposed method, we applied the method to identify the damages in cantilevered plates that are subject to static or dynamic loads. The method succeeded in detecting the locations and shapes of damages more accurately than the method without Lasso regularization. Furthermore, in most cases we have considered, spurious damages generated during the optimization were successfully suppressed.\\n</p></div>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":\"93 10\",\"pages\":\"3827 - 3850\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00419-023-02464-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-023-02464-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Damage identification based on topology optimization and Lasso regularization
In this paper, we present a damage identification method for small damages based on topology optimization and Lasso regularization. In particular, this work extends the applicability of the previously developed damage identification method using frequency response functions and topology optimization, by conducting rigorous parametric studies in terms of damping, measurement noise, and damage size. It is shown that the presented method successfully identifies small damaged regions with a reasonable accuracy. To evaluate the effectiveness of the proposed method, we applied the method to identify the damages in cantilevered plates that are subject to static or dynamic loads. The method succeeded in detecting the locations and shapes of damages more accurately than the method without Lasso regularization. Furthermore, in most cases we have considered, spurious damages generated during the optimization were successfully suppressed.
期刊介绍:
Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.