{"title":"基于端面铝镜双芯光纤迈克尔逊干涉仪的相对湿度传感器","authors":"Jun-ni Cheng, Xiao-yan Jiang","doi":"10.1007/s10043-023-00834-8","DOIUrl":null,"url":null,"abstract":"<div><p>A relative humidity (RH) sensor based on in-fiber Michelson interferometer (MI) is proposed, which consists of a short piece of graded-index multimode fiber (GIMMF) followed by a 2-core fiber (2CF), whose end face is terminated by a thick aluminum film. The GIMMF excites cladding modes into the pigtail 2CF via the mismatched-core splicing interface. The core-cladding modes are reflected back by the aluminum film and recoupled to the core of lead-in SMF through the GIMMF. A well-defined interference pattern is obtained as the result of core-cladding mode interference. The experimental results show that a configuration with a 10 mm pigtail 2CF at a wavelength of 1552.78 nm has a good linear response to relative humidity with the sensitivity of – 0.044 dB/%RH in the range of 35–95%RH. Meanwhile, the selected monitoring peak provides a better temperature sensitivity of 65 pm/℃ in the range of 35 –85 ℃. In addition, the aluminum film is manufactured by physical vapor deposition (PVD), which greatly enhances the compactness of the film and improves the contrast of the interference fringes; the manufacturing method has high repeatability.</p></div>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"30 5","pages":"549 - 558"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A relative humidity sensor based on 2-core fiber Michelson interferometer with end-face aluminium mirror\",\"authors\":\"Jun-ni Cheng, Xiao-yan Jiang\",\"doi\":\"10.1007/s10043-023-00834-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A relative humidity (RH) sensor based on in-fiber Michelson interferometer (MI) is proposed, which consists of a short piece of graded-index multimode fiber (GIMMF) followed by a 2-core fiber (2CF), whose end face is terminated by a thick aluminum film. The GIMMF excites cladding modes into the pigtail 2CF via the mismatched-core splicing interface. The core-cladding modes are reflected back by the aluminum film and recoupled to the core of lead-in SMF through the GIMMF. A well-defined interference pattern is obtained as the result of core-cladding mode interference. The experimental results show that a configuration with a 10 mm pigtail 2CF at a wavelength of 1552.78 nm has a good linear response to relative humidity with the sensitivity of – 0.044 dB/%RH in the range of 35–95%RH. Meanwhile, the selected monitoring peak provides a better temperature sensitivity of 65 pm/℃ in the range of 35 –85 ℃. In addition, the aluminum film is manufactured by physical vapor deposition (PVD), which greatly enhances the compactness of the film and improves the contrast of the interference fringes; the manufacturing method has high repeatability.</p></div>\",\"PeriodicalId\":722,\"journal\":{\"name\":\"Optical Review\",\"volume\":\"30 5\",\"pages\":\"549 - 558\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Review\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10043-023-00834-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Review","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10043-023-00834-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
A relative humidity sensor based on 2-core fiber Michelson interferometer with end-face aluminium mirror
A relative humidity (RH) sensor based on in-fiber Michelson interferometer (MI) is proposed, which consists of a short piece of graded-index multimode fiber (GIMMF) followed by a 2-core fiber (2CF), whose end face is terminated by a thick aluminum film. The GIMMF excites cladding modes into the pigtail 2CF via the mismatched-core splicing interface. The core-cladding modes are reflected back by the aluminum film and recoupled to the core of lead-in SMF through the GIMMF. A well-defined interference pattern is obtained as the result of core-cladding mode interference. The experimental results show that a configuration with a 10 mm pigtail 2CF at a wavelength of 1552.78 nm has a good linear response to relative humidity with the sensitivity of – 0.044 dB/%RH in the range of 35–95%RH. Meanwhile, the selected monitoring peak provides a better temperature sensitivity of 65 pm/℃ in the range of 35 –85 ℃. In addition, the aluminum film is manufactured by physical vapor deposition (PVD), which greatly enhances the compactness of the film and improves the contrast of the interference fringes; the manufacturing method has high repeatability.
期刊介绍:
Optical Review is an international journal published by the Optical Society of Japan. The scope of the journal is:
General and physical optics;
Quantum optics and spectroscopy;
Information optics;
Photonics and optoelectronics;
Biomedical photonics and biological optics;
Lasers;
Nonlinear optics;
Optical systems and technologies;
Optical materials and manufacturing technologies;
Vision;
Infrared and short wavelength optics;
Cross-disciplinary areas such as environmental, energy, food, agriculture and space technologies;
Other optical methods and applications.