具有随机步长的象随机游动中心极限定理的收敛速度

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Jérôme Dedecker, Xiequan Fan, Haijuan Hu, Florence Merlevède
{"title":"具有随机步长的象随机游动中心极限定理的收敛速度","authors":"Jérôme Dedecker,&nbsp;Xiequan Fan,&nbsp;Haijuan Hu,&nbsp;Florence Merlevède","doi":"10.1007/s10955-023-03168-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider a generalization of the elephant random walk model. Compared to the usual elephant random walk, an interesting feature of this model is that the step sizes form a sequence of positive independent and identically distributed random variables instead of a fixed constant. For this model, we establish the law of the iterated logarithm, the central limit theorem, and we obtain rates of convergence in the central limit theorem with respect to the Kolmogorov, Zolotarev and Wasserstein distances. We emphasize that, even in case of the usual elephant random walk, our results concerning the rates of convergence in the central limit theorem are new.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"190 10","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-023-03168-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Rates of Convergence in the Central Limit Theorem for the Elephant Random Walk with Random Step Sizes\",\"authors\":\"Jérôme Dedecker,&nbsp;Xiequan Fan,&nbsp;Haijuan Hu,&nbsp;Florence Merlevède\",\"doi\":\"10.1007/s10955-023-03168-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider a generalization of the elephant random walk model. Compared to the usual elephant random walk, an interesting feature of this model is that the step sizes form a sequence of positive independent and identically distributed random variables instead of a fixed constant. For this model, we establish the law of the iterated logarithm, the central limit theorem, and we obtain rates of convergence in the central limit theorem with respect to the Kolmogorov, Zolotarev and Wasserstein distances. We emphasize that, even in case of the usual elephant random walk, our results concerning the rates of convergence in the central limit theorem are new.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"190 10\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10955-023-03168-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-023-03168-6\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-023-03168-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑象随机行走模型的一个推广。与通常的大象随机行走相比,该模型的一个有趣的特点是步长形成了一个正独立且同分布的随机变量序列,而不是一个固定常数。对于这个模型,我们建立了重对数定律,即中心极限定理,并获得了中心极限定理相对于Kolmogorov、Zolotarev和Wasserstein距离的收敛速度。我们强调,即使在通常的大象随机行走的情况下,我们关于中心极限定理收敛速度的结果也是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rates of Convergence in the Central Limit Theorem for the Elephant Random Walk with Random Step Sizes

In this paper, we consider a generalization of the elephant random walk model. Compared to the usual elephant random walk, an interesting feature of this model is that the step sizes form a sequence of positive independent and identically distributed random variables instead of a fixed constant. For this model, we establish the law of the iterated logarithm, the central limit theorem, and we obtain rates of convergence in the central limit theorem with respect to the Kolmogorov, Zolotarev and Wasserstein distances. We emphasize that, even in case of the usual elephant random walk, our results concerning the rates of convergence in the central limit theorem are new.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信