Xue-Yi Sun, Ya-Xuan Liang, Yi-Nan Gao, Xi Zhang, Rui Liu, Quan Tang, Zhong-Lin Lu and Yang Liu
{"title":"[12] ANN3-修饰的喜树碱和PEG化的AIEgens共组装成核壳纳米颗粒,具有ROS/NTR双重反应,用于增强癌症治疗†","authors":"Xue-Yi Sun, Ya-Xuan Liang, Yi-Nan Gao, Xi Zhang, Rui Liu, Quan Tang, Zhong-Lin Lu and Yang Liu","doi":"10.1039/D3TB01282D","DOIUrl":null,"url":null,"abstract":"<p >A novel dual-responsive nanoparticle (NP) system was aimed to be developed for the co-delivery of camptothecin (CPT) and plasmid encoding TNF-related apoptosis-inducing ligand (pTRAIL) DNA in cancer therapy. The combination of the prodrug CPT and the nucleic acid condensing di-(triazole-[12]aneN3) unit with 4-nitrobenzyl ester through alkyl chains resulted in three nitroreductase (NTR) responsive amphiphiles, <strong>CNN1–CNN3</strong> (with 5, 8, and 11 carbon chains, respectively). Among them, <strong>CNN2</strong> was the most effective in inhibiting the proliferation of HeLa cells in the presence of fusogenic lipid DOPE. The NPs composed of <strong>CNN2</strong>, pDNA, and DOPE were further co-assembled with ROS-responsive thioketal-linked amphiphilic polymer (<strong>TTP</strong>) to afford the core–shell NPs (<strong>CNN2-DT</strong>/pDNA) with an average size of 118 nm, which exhibited high drug-loading capacity, excellent serum tolerance, and good biocompatibility. In the presence of ROS, NTR, and NADH, the core–shell NPs were decomposed, leading to the efficient release of 80% CPT and abundant pDNA. The self-assembly and delivery process of <strong>CNN2-DT</strong> NPs and DNA were clearly observed through the AIE fluorescent imaging. <em>In vitro</em> and <em>in vivo</em> results demonstrated that the <strong>CNN2-DT</strong>/pTRAIL NPs synergistically promoted 68% apoptosis of tumor cells and inhibited tumor growth with negligible toxic side effects. This study showed that the combination of prodrug and nucleic acid through dual-responsive core–shell NPs provide a spatially and temporally-controlled strategy for cancer therapy.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 37","pages":" 8943-8955"},"PeriodicalIF":6.1000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[12]aneN3-modified camptothecin and PEGylated AIEgens co-assembly into core–shell nanoparticles with ROS/NTR dual-response for enhanced cancer therapy†\",\"authors\":\"Xue-Yi Sun, Ya-Xuan Liang, Yi-Nan Gao, Xi Zhang, Rui Liu, Quan Tang, Zhong-Lin Lu and Yang Liu\",\"doi\":\"10.1039/D3TB01282D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A novel dual-responsive nanoparticle (NP) system was aimed to be developed for the co-delivery of camptothecin (CPT) and plasmid encoding TNF-related apoptosis-inducing ligand (pTRAIL) DNA in cancer therapy. The combination of the prodrug CPT and the nucleic acid condensing di-(triazole-[12]aneN3) unit with 4-nitrobenzyl ester through alkyl chains resulted in three nitroreductase (NTR) responsive amphiphiles, <strong>CNN1–CNN3</strong> (with 5, 8, and 11 carbon chains, respectively). Among them, <strong>CNN2</strong> was the most effective in inhibiting the proliferation of HeLa cells in the presence of fusogenic lipid DOPE. The NPs composed of <strong>CNN2</strong>, pDNA, and DOPE were further co-assembled with ROS-responsive thioketal-linked amphiphilic polymer (<strong>TTP</strong>) to afford the core–shell NPs (<strong>CNN2-DT</strong>/pDNA) with an average size of 118 nm, which exhibited high drug-loading capacity, excellent serum tolerance, and good biocompatibility. In the presence of ROS, NTR, and NADH, the core–shell NPs were decomposed, leading to the efficient release of 80% CPT and abundant pDNA. The self-assembly and delivery process of <strong>CNN2-DT</strong> NPs and DNA were clearly observed through the AIE fluorescent imaging. <em>In vitro</em> and <em>in vivo</em> results demonstrated that the <strong>CNN2-DT</strong>/pTRAIL NPs synergistically promoted 68% apoptosis of tumor cells and inhibited tumor growth with negligible toxic side effects. This study showed that the combination of prodrug and nucleic acid through dual-responsive core–shell NPs provide a spatially and temporally-controlled strategy for cancer therapy.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 37\",\"pages\":\" 8943-8955\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/tb/d3tb01282d\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/tb/d3tb01282d","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
[12]aneN3-modified camptothecin and PEGylated AIEgens co-assembly into core–shell nanoparticles with ROS/NTR dual-response for enhanced cancer therapy†
A novel dual-responsive nanoparticle (NP) system was aimed to be developed for the co-delivery of camptothecin (CPT) and plasmid encoding TNF-related apoptosis-inducing ligand (pTRAIL) DNA in cancer therapy. The combination of the prodrug CPT and the nucleic acid condensing di-(triazole-[12]aneN3) unit with 4-nitrobenzyl ester through alkyl chains resulted in three nitroreductase (NTR) responsive amphiphiles, CNN1–CNN3 (with 5, 8, and 11 carbon chains, respectively). Among them, CNN2 was the most effective in inhibiting the proliferation of HeLa cells in the presence of fusogenic lipid DOPE. The NPs composed of CNN2, pDNA, and DOPE were further co-assembled with ROS-responsive thioketal-linked amphiphilic polymer (TTP) to afford the core–shell NPs (CNN2-DT/pDNA) with an average size of 118 nm, which exhibited high drug-loading capacity, excellent serum tolerance, and good biocompatibility. In the presence of ROS, NTR, and NADH, the core–shell NPs were decomposed, leading to the efficient release of 80% CPT and abundant pDNA. The self-assembly and delivery process of CNN2-DT NPs and DNA were clearly observed through the AIE fluorescent imaging. In vitro and in vivo results demonstrated that the CNN2-DT/pTRAIL NPs synergistically promoted 68% apoptosis of tumor cells and inhibited tumor growth with negligible toxic side effects. This study showed that the combination of prodrug and nucleic acid through dual-responsive core–shell NPs provide a spatially and temporally-controlled strategy for cancer therapy.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices