Andrea Balivo, Giulia d’Errico, Alessandro Genovese
{"title":"乳蛋白功能化食品的感官特性","authors":"Andrea Balivo, Giulia d’Errico, Alessandro Genovese","doi":"10.1016/j.foodhyd.2023.109301","DOIUrl":null,"url":null,"abstract":"<div><p>The growing interest in a healthy lifestyle has motivated consumers to ask for functional foods capable of conferring additional benefits to simple nutrition. However, such functional products must also meet the sensory features required by the market to be competitive and acceptable for consumption. In this regard, milk proteins have been very successful due to their nutritional quality and their versatility as food ingredients. Here we have reviewed the current knowledge on the use of native or customised milk proteins to improve the nutritional and techno-functional properties of functional foods. We also explore the interactions between milk proteins and other matrix components (i.e., volatile compounds and phenolic compounds), focusing on the effects of their addition on the physicochemical and sensory properties. Furthermore, we discuss the applications of milk proteins (whey and casein-based ingredients) in both dairy and non-dairy foods. Milk proteins are versatile and can be used to develop customised milk protein-based ingredients with the most desired functional properties. Their binding properties with volatile and phenolic compounds improve the flavour perception, helping to reduce fat, sugar and salt in foods. Such interactions between milk proteins and food matrix components can change the protein structure imparting new functional properties. Depending on the food formulation and purpose, the amount and type of milk protein to be used are good variables to consider in order to optimise the technological and sensory properties of food.</p></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"147 ","pages":"Article 109301"},"PeriodicalIF":11.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sensory properties of foods functionalised with milk proteins\",\"authors\":\"Andrea Balivo, Giulia d’Errico, Alessandro Genovese\",\"doi\":\"10.1016/j.foodhyd.2023.109301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The growing interest in a healthy lifestyle has motivated consumers to ask for functional foods capable of conferring additional benefits to simple nutrition. However, such functional products must also meet the sensory features required by the market to be competitive and acceptable for consumption. In this regard, milk proteins have been very successful due to their nutritional quality and their versatility as food ingredients. Here we have reviewed the current knowledge on the use of native or customised milk proteins to improve the nutritional and techno-functional properties of functional foods. We also explore the interactions between milk proteins and other matrix components (i.e., volatile compounds and phenolic compounds), focusing on the effects of their addition on the physicochemical and sensory properties. Furthermore, we discuss the applications of milk proteins (whey and casein-based ingredients) in both dairy and non-dairy foods. Milk proteins are versatile and can be used to develop customised milk protein-based ingredients with the most desired functional properties. Their binding properties with volatile and phenolic compounds improve the flavour perception, helping to reduce fat, sugar and salt in foods. Such interactions between milk proteins and food matrix components can change the protein structure imparting new functional properties. Depending on the food formulation and purpose, the amount and type of milk protein to be used are good variables to consider in order to optimise the technological and sensory properties of food.</p></div>\",\"PeriodicalId\":320,\"journal\":{\"name\":\"Food Hydrocolloids\",\"volume\":\"147 \",\"pages\":\"Article 109301\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Hydrocolloids\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0268005X23008470\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X23008470","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Sensory properties of foods functionalised with milk proteins
The growing interest in a healthy lifestyle has motivated consumers to ask for functional foods capable of conferring additional benefits to simple nutrition. However, such functional products must also meet the sensory features required by the market to be competitive and acceptable for consumption. In this regard, milk proteins have been very successful due to their nutritional quality and their versatility as food ingredients. Here we have reviewed the current knowledge on the use of native or customised milk proteins to improve the nutritional and techno-functional properties of functional foods. We also explore the interactions between milk proteins and other matrix components (i.e., volatile compounds and phenolic compounds), focusing on the effects of their addition on the physicochemical and sensory properties. Furthermore, we discuss the applications of milk proteins (whey and casein-based ingredients) in both dairy and non-dairy foods. Milk proteins are versatile and can be used to develop customised milk protein-based ingredients with the most desired functional properties. Their binding properties with volatile and phenolic compounds improve the flavour perception, helping to reduce fat, sugar and salt in foods. Such interactions between milk proteins and food matrix components can change the protein structure imparting new functional properties. Depending on the food formulation and purpose, the amount and type of milk protein to be used are good variables to consider in order to optimise the technological and sensory properties of food.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.