Sergey P. Verevkin, Dzmitry H. Zaitsau, Andrei V. Yermalayeu, Sergey V. Vostrikov
{"title":"铵基离子液体:使用溶液量热法、石英晶体微量天平、量子化学和结构-性质关系对能量学进行交叉验证","authors":"Sergey P. Verevkin, Dzmitry H. Zaitsau, Andrei V. Yermalayeu, Sergey V. Vostrikov","doi":"10.1007/s10953-023-01307-x","DOIUrl":null,"url":null,"abstract":"<div><p>The solution enthalpies of tetra-methyl- and tetra-butyl-ammonium tetrafluoroborates were measured using solution calorimetry. The sublimation enthalpies and vaporization enthalpies of ammonium-based ionic liquids with the anions [BF<sub>4</sub>] and [NO<sub>3</sub>] were derived from temperature dependencies of the vapour pressures, measured with a quartz crystal microbalance and adjusted to the reference temperature 298.15 K. The solution calorimetry results were used to derive the solid-phase enthalpies of formation of the compounds studied. The latter results were combined with the sublimation enthalpies to obtain the experimental gas-phase formation enthalpies of the ionic liquid containing [BF<sub>4</sub>] and [NO<sub>3</sub>] anions. The theoretical gas-phase formation enthalpies were calculated using the quantum chemical method G3MP2 and agree well with the experimental results. Different types of structure–property relationships were used to establish the consistency of the alkyl-ammonium-based ionic liquids studied in this work.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"52 10","pages":"1194 - 1208"},"PeriodicalIF":1.4000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10953-023-01307-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Ammonium-Based Ionic Liquids: Cross-Validation of Energetics Using Solution Calorimetry, Quartz Crystal Microbalance, Quantum Chemistry, and Structure–Property Relationships\",\"authors\":\"Sergey P. Verevkin, Dzmitry H. Zaitsau, Andrei V. Yermalayeu, Sergey V. Vostrikov\",\"doi\":\"10.1007/s10953-023-01307-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The solution enthalpies of tetra-methyl- and tetra-butyl-ammonium tetrafluoroborates were measured using solution calorimetry. The sublimation enthalpies and vaporization enthalpies of ammonium-based ionic liquids with the anions [BF<sub>4</sub>] and [NO<sub>3</sub>] were derived from temperature dependencies of the vapour pressures, measured with a quartz crystal microbalance and adjusted to the reference temperature 298.15 K. The solution calorimetry results were used to derive the solid-phase enthalpies of formation of the compounds studied. The latter results were combined with the sublimation enthalpies to obtain the experimental gas-phase formation enthalpies of the ionic liquid containing [BF<sub>4</sub>] and [NO<sub>3</sub>] anions. The theoretical gas-phase formation enthalpies were calculated using the quantum chemical method G3MP2 and agree well with the experimental results. Different types of structure–property relationships were used to establish the consistency of the alkyl-ammonium-based ionic liquids studied in this work.</p></div>\",\"PeriodicalId\":666,\"journal\":{\"name\":\"Journal of Solution Chemistry\",\"volume\":\"52 10\",\"pages\":\"1194 - 1208\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10953-023-01307-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solution Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10953-023-01307-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solution Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10953-023-01307-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ammonium-Based Ionic Liquids: Cross-Validation of Energetics Using Solution Calorimetry, Quartz Crystal Microbalance, Quantum Chemistry, and Structure–Property Relationships
The solution enthalpies of tetra-methyl- and tetra-butyl-ammonium tetrafluoroborates were measured using solution calorimetry. The sublimation enthalpies and vaporization enthalpies of ammonium-based ionic liquids with the anions [BF4] and [NO3] were derived from temperature dependencies of the vapour pressures, measured with a quartz crystal microbalance and adjusted to the reference temperature 298.15 K. The solution calorimetry results were used to derive the solid-phase enthalpies of formation of the compounds studied. The latter results were combined with the sublimation enthalpies to obtain the experimental gas-phase formation enthalpies of the ionic liquid containing [BF4] and [NO3] anions. The theoretical gas-phase formation enthalpies were calculated using the quantum chemical method G3MP2 and agree well with the experimental results. Different types of structure–property relationships were used to establish the consistency of the alkyl-ammonium-based ionic liquids studied in this work.
期刊介绍:
Journal of Solution Chemistry offers a forum for research on the physical chemistry of liquid solutions in such fields as physical chemistry, chemical physics, molecular biology, statistical mechanics, biochemistry, and biophysics. The emphasis is on papers in which the solvent plays a dominant rather than incidental role. Featured topics include experimental investigations of the dielectric, spectroscopic, thermodynamic, transport, or relaxation properties of both electrolytes and nonelectrolytes in liquid solutions.