Fengmei Cui, Tianzi Wang, Qiu Chen, Liang Sun, Na Chen, Jun Wan, Shengri Li, Qixuan Zhang, Meng Zhang, Hongbin Yan, Liang Liu and Yu Tu*,
{"title":"氚水在不同生物介质中毒性作用的分子机制","authors":"Fengmei Cui, Tianzi Wang, Qiu Chen, Liang Sun, Na Chen, Jun Wan, Shengri Li, Qixuan Zhang, Meng Zhang, Hongbin Yan, Liang Liu and Yu Tu*, ","doi":"10.1021/acs.chas.3c00037","DOIUrl":null,"url":null,"abstract":"<p >After decades of research, the biological effects of tritium have been basically clear. Compared with many studies on tritium biology and RBE value, the research on the toxicity mechanism is relatively lacking. Previous research on the mechanism of tritiated water toxicity focused on oxidative stress, cell apoptosis, and DNA damage, but the specific molecular mechanism is lacking. With the development of molecular biology technology, it has become possible to elucidate the molecular mechanism of internal tritium radiation damage at multiple levels. In this paper, we reviewed our studies over the past ten years to clarify the mechanism of tritium toxicity from different aspects such as miRNA, DNA methylation, and gene expression changes. Some key target molecules were found and tried to be used to evaluate the tritium toxicity.</p>","PeriodicalId":12,"journal":{"name":"ACS Chemical Health & Safety","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Mechanism of Toxic Effects of Tritium Water in Different Biological Media\",\"authors\":\"Fengmei Cui, Tianzi Wang, Qiu Chen, Liang Sun, Na Chen, Jun Wan, Shengri Li, Qixuan Zhang, Meng Zhang, Hongbin Yan, Liang Liu and Yu Tu*, \",\"doi\":\"10.1021/acs.chas.3c00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >After decades of research, the biological effects of tritium have been basically clear. Compared with many studies on tritium biology and RBE value, the research on the toxicity mechanism is relatively lacking. Previous research on the mechanism of tritiated water toxicity focused on oxidative stress, cell apoptosis, and DNA damage, but the specific molecular mechanism is lacking. With the development of molecular biology technology, it has become possible to elucidate the molecular mechanism of internal tritium radiation damage at multiple levels. In this paper, we reviewed our studies over the past ten years to clarify the mechanism of tritium toxicity from different aspects such as miRNA, DNA methylation, and gene expression changes. Some key target molecules were found and tried to be used to evaluate the tritium toxicity.</p>\",\"PeriodicalId\":12,\"journal\":{\"name\":\"ACS Chemical Health & Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Health & Safety\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chas.3c00037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Health & Safety","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chas.3c00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Molecular Mechanism of Toxic Effects of Tritium Water in Different Biological Media
After decades of research, the biological effects of tritium have been basically clear. Compared with many studies on tritium biology and RBE value, the research on the toxicity mechanism is relatively lacking. Previous research on the mechanism of tritiated water toxicity focused on oxidative stress, cell apoptosis, and DNA damage, but the specific molecular mechanism is lacking. With the development of molecular biology technology, it has become possible to elucidate the molecular mechanism of internal tritium radiation damage at multiple levels. In this paper, we reviewed our studies over the past ten years to clarify the mechanism of tritium toxicity from different aspects such as miRNA, DNA methylation, and gene expression changes. Some key target molecules were found and tried to be used to evaluate the tritium toxicity.
期刊介绍:
The Journal of Chemical Health and Safety focuses on news, information, and ideas relating to issues and advances in chemical health and safety. The Journal of Chemical Health and Safety covers up-to-the minute, in-depth views of safety issues ranging from OSHA and EPA regulations to the safe handling of hazardous waste, from the latest innovations in effective chemical hygiene practices to the courts'' most recent rulings on safety-related lawsuits. The Journal of Chemical Health and Safety presents real-world information that health, safety and environmental professionals and others responsible for the safety of their workplaces can put to use right away, identifying potential and developing safety concerns before they do real harm.