Palas Kumar Chanda, Tridib Ganguly, Malabika Das, Chia Yen Lee, Thanh T Luong, Subrata Sau
{"title":"利用含有热诱导启动子- lacZ转录融合的金黄色葡萄球菌报告菌株开发的生物检测系统检测抗葡萄球菌和有毒化合物。","authors":"Palas Kumar Chanda, Tridib Ganguly, Malabika Das, Chia Yen Lee, Thanh T Luong, Subrata Sau","doi":"10.5483/bmbrep.2007.40.6.936","DOIUrl":null,"url":null,"abstract":"<p><p>Previously it was reported that promoter of groES-groEL operon of Staphylococcus aureus is induced by various cell-wall active antibiotics. In order to exploit the above promoter for identifying novel antistaphylococcal drugs, we have cloned the promoter containing region (P(g)) of groES-groEL operon of S. aureus Newman and found that the above promoter is induced by sublethal concentrations of many antibiotics including cell-wall active antibiotics. A reporter S. aureus RN4220 strain (designated SAU006) was constructed by inserting the P(g)-lacZ transcriptional fusion into its chromosome. Agarose-based assay developed with SAU006 shows that P(g) in single-copy is also induced distinctly by different classes of antibiotics. Data indicate that ciprofloxacin, rifampicin, ampicillin, and cephalothin are strong inducers, whereas, tetracycline, streptomycin and vancomycin induce the above promoter weakly. Sublethal concentrations of ciprofloxacin and ampicilin even have induced P(g) efficiently in microtiter plate grown SAU006. Additional studies show for the first time that above promoter is also induced weakly by arsenate salt and hydrogen peroxide. Taken together, we suggest that our simple and sensitive assay systems with SAU006 could be utilized for screening and detecting not only novel antistaphylococcal compounds but also different toxic chemicals.</p>","PeriodicalId":15113,"journal":{"name":"Journal of biochemistry and molecular biology","volume":"40 6","pages":"936-43"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Detection of antistaphylococcal and toxic compounds by biological assay systems developed with a reporter Staphylococcus aureus strain harboring a heat inducible promoter - lacZ transcriptional fusion.\",\"authors\":\"Palas Kumar Chanda, Tridib Ganguly, Malabika Das, Chia Yen Lee, Thanh T Luong, Subrata Sau\",\"doi\":\"10.5483/bmbrep.2007.40.6.936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previously it was reported that promoter of groES-groEL operon of Staphylococcus aureus is induced by various cell-wall active antibiotics. In order to exploit the above promoter for identifying novel antistaphylococcal drugs, we have cloned the promoter containing region (P(g)) of groES-groEL operon of S. aureus Newman and found that the above promoter is induced by sublethal concentrations of many antibiotics including cell-wall active antibiotics. A reporter S. aureus RN4220 strain (designated SAU006) was constructed by inserting the P(g)-lacZ transcriptional fusion into its chromosome. Agarose-based assay developed with SAU006 shows that P(g) in single-copy is also induced distinctly by different classes of antibiotics. Data indicate that ciprofloxacin, rifampicin, ampicillin, and cephalothin are strong inducers, whereas, tetracycline, streptomycin and vancomycin induce the above promoter weakly. Sublethal concentrations of ciprofloxacin and ampicilin even have induced P(g) efficiently in microtiter plate grown SAU006. Additional studies show for the first time that above promoter is also induced weakly by arsenate salt and hydrogen peroxide. Taken together, we suggest that our simple and sensitive assay systems with SAU006 could be utilized for screening and detecting not only novel antistaphylococcal compounds but also different toxic chemicals.</p>\",\"PeriodicalId\":15113,\"journal\":{\"name\":\"Journal of biochemistry and molecular biology\",\"volume\":\"40 6\",\"pages\":\"936-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biochemistry and molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5483/bmbrep.2007.40.6.936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry and molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5483/bmbrep.2007.40.6.936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of antistaphylococcal and toxic compounds by biological assay systems developed with a reporter Staphylococcus aureus strain harboring a heat inducible promoter - lacZ transcriptional fusion.
Previously it was reported that promoter of groES-groEL operon of Staphylococcus aureus is induced by various cell-wall active antibiotics. In order to exploit the above promoter for identifying novel antistaphylococcal drugs, we have cloned the promoter containing region (P(g)) of groES-groEL operon of S. aureus Newman and found that the above promoter is induced by sublethal concentrations of many antibiotics including cell-wall active antibiotics. A reporter S. aureus RN4220 strain (designated SAU006) was constructed by inserting the P(g)-lacZ transcriptional fusion into its chromosome. Agarose-based assay developed with SAU006 shows that P(g) in single-copy is also induced distinctly by different classes of antibiotics. Data indicate that ciprofloxacin, rifampicin, ampicillin, and cephalothin are strong inducers, whereas, tetracycline, streptomycin and vancomycin induce the above promoter weakly. Sublethal concentrations of ciprofloxacin and ampicilin even have induced P(g) efficiently in microtiter plate grown SAU006. Additional studies show for the first time that above promoter is also induced weakly by arsenate salt and hydrogen peroxide. Taken together, we suggest that our simple and sensitive assay systems with SAU006 could be utilized for screening and detecting not only novel antistaphylococcal compounds but also different toxic chemicals.