{"title":"不锈钢AISI304铝基碳化钨涂层的腐蚀性能和摩擦学行为","authors":"A. A. Burkov, A. Yu. Bytsura","doi":"10.1134/S1063783422110026","DOIUrl":null,"url":null,"abstract":"<p>WC–Fe–Al coatings were obtained by the electrospark deposition of AISI304 stainless steel in an anode mixture of aluminum and iron granules with the addition of tungsten carbide powder. The coatings had a two-phase microstructure represented by an intermetallic Fe–Al matrix with large inclusions of tungsten carbide. Impedance spectrometry in 3.5% NaCl showed a decrease in the corrosion resistance of WC–Fe–Al coatings with an increase in the concentration of tungsten carbide in the anode mixture. Polarization tests showed that with an increase in the content of tungsten carbide in the anode mixture, the corrosion potential of coatings monotonically increased from –0.77 to –0.61 V. At the same time, the corrosion current density increased linearly from 19.4 to 62.7 µA/cm<sup>2</sup>. High-temperature oxidation of coatings are intensified with an increase in the concentration of tungsten carbide at a temperature of 900°C for 100 h of testing, however, moderate reinforcement of the Fe–Al matrix with tungsten carbide did not worsen its oxidation resistance. With increase in the of reinforcing ceramic content in the Fe–Al coating, its microhardness increases from 7.3 to 11 GPa, the coefficient of friction decreases to 0.51 and wear resistance improves. The use of WC/Fe–Al coatings on AISI 304 stainless steel makes it possible to increase the hardness and oxidation resistance of steel surface, reduce the coefficient of friction, and improve wear resistance up to 19 times.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"64 9","pages":"504 - 510"},"PeriodicalIF":0.9000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion Properties and Tribological Behavior of Tungsten Carbide Coatings with Alumide Matrix of SS AISI304\",\"authors\":\"A. A. Burkov, A. Yu. Bytsura\",\"doi\":\"10.1134/S1063783422110026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>WC–Fe–Al coatings were obtained by the electrospark deposition of AISI304 stainless steel in an anode mixture of aluminum and iron granules with the addition of tungsten carbide powder. The coatings had a two-phase microstructure represented by an intermetallic Fe–Al matrix with large inclusions of tungsten carbide. Impedance spectrometry in 3.5% NaCl showed a decrease in the corrosion resistance of WC–Fe–Al coatings with an increase in the concentration of tungsten carbide in the anode mixture. Polarization tests showed that with an increase in the content of tungsten carbide in the anode mixture, the corrosion potential of coatings monotonically increased from –0.77 to –0.61 V. At the same time, the corrosion current density increased linearly from 19.4 to 62.7 µA/cm<sup>2</sup>. High-temperature oxidation of coatings are intensified with an increase in the concentration of tungsten carbide at a temperature of 900°C for 100 h of testing, however, moderate reinforcement of the Fe–Al matrix with tungsten carbide did not worsen its oxidation resistance. With increase in the of reinforcing ceramic content in the Fe–Al coating, its microhardness increases from 7.3 to 11 GPa, the coefficient of friction decreases to 0.51 and wear resistance improves. The use of WC/Fe–Al coatings on AISI 304 stainless steel makes it possible to increase the hardness and oxidation resistance of steel surface, reduce the coefficient of friction, and improve wear resistance up to 19 times.</p>\",\"PeriodicalId\":731,\"journal\":{\"name\":\"Physics of the Solid State\",\"volume\":\"64 9\",\"pages\":\"504 - 510\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Solid State\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063783422110026\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783422110026","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Corrosion Properties and Tribological Behavior of Tungsten Carbide Coatings with Alumide Matrix of SS AISI304
WC–Fe–Al coatings were obtained by the electrospark deposition of AISI304 stainless steel in an anode mixture of aluminum and iron granules with the addition of tungsten carbide powder. The coatings had a two-phase microstructure represented by an intermetallic Fe–Al matrix with large inclusions of tungsten carbide. Impedance spectrometry in 3.5% NaCl showed a decrease in the corrosion resistance of WC–Fe–Al coatings with an increase in the concentration of tungsten carbide in the anode mixture. Polarization tests showed that with an increase in the content of tungsten carbide in the anode mixture, the corrosion potential of coatings monotonically increased from –0.77 to –0.61 V. At the same time, the corrosion current density increased linearly from 19.4 to 62.7 µA/cm2. High-temperature oxidation of coatings are intensified with an increase in the concentration of tungsten carbide at a temperature of 900°C for 100 h of testing, however, moderate reinforcement of the Fe–Al matrix with tungsten carbide did not worsen its oxidation resistance. With increase in the of reinforcing ceramic content in the Fe–Al coating, its microhardness increases from 7.3 to 11 GPa, the coefficient of friction decreases to 0.51 and wear resistance improves. The use of WC/Fe–Al coatings on AISI 304 stainless steel makes it possible to increase the hardness and oxidation resistance of steel surface, reduce the coefficient of friction, and improve wear resistance up to 19 times.
期刊介绍:
Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.