J Monfort, M Nacher, E Montell, J Vila, J Verges, P Benito
{"title":"硫酸软骨素和透明质酸(500-730 kda)抑制人骨关节炎软骨细胞基质溶素-1的合成。","authors":"J Monfort, M Nacher, E Montell, J Vila, J Verges, P Benito","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Chondroitin sulfate (CS) and 500-730 kDa hyaluronic acid (HA) are symptomatic slow-acting drugs for the treatment of osteoarthritis (OA). In addition, a growing body of evidence suggests a role for CS and this specific HA as modifiers of the course of OA. The therapeutic efficacy of CS and HA lies in their different mechanisms of action. Stromelysin-1 (metalloprotease-3 [MMP-3]) is a cartilage proteolytic enzyme, which induces cartilage destruction and acts as a mediator of the inflammatory response. However, there are few studies evaluating the in vitro effect of CS and HA on MMP-3 synthesis in human chondrocyte cultures from OA patients. Thus, the aim of the present study was to analyze the effect of CS and HA (500-730 kDa) on MMP-3 synthesis induced by interleukin-1beta (IL-1beta) in chondrocytes from patients with hip OA. Chondrocyte cultures were incubated for 48 h with IL-1beta (2.5 ng/ml) in the absence or presence of different HA 500-730 kDa (Hyalgan, Bioibérica Farma, Barcelona, Spain) concentrations, or alternatively, CS (Condro.san, Bioibérica Farma) at concentrations of 10, 50, 100, 150, 200 and 1,000 microg/ml. The results revealed that both CS and HA (500-730 kDa) inhibited MMP-3 synthesis induced by IL-1beta in human OA chondrocytes. Specifically, CS and HA (500-730 kDa) reduced MMP-3 expression levels at all tested concentrations. Therefore, our study provides new data on the mechanism of action of these drugs, which could help to explain their clinical efficacy in OA patients.</p>","PeriodicalId":11336,"journal":{"name":"Drugs under experimental and clinical research","volume":"31 2","pages":"71-6"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chondroitin sulfate and hyaluronic acid (500-730 kda) inhibit stromelysin-1 synthesis in human osteoarthritic chondrocytes.\",\"authors\":\"J Monfort, M Nacher, E Montell, J Vila, J Verges, P Benito\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chondroitin sulfate (CS) and 500-730 kDa hyaluronic acid (HA) are symptomatic slow-acting drugs for the treatment of osteoarthritis (OA). In addition, a growing body of evidence suggests a role for CS and this specific HA as modifiers of the course of OA. The therapeutic efficacy of CS and HA lies in their different mechanisms of action. Stromelysin-1 (metalloprotease-3 [MMP-3]) is a cartilage proteolytic enzyme, which induces cartilage destruction and acts as a mediator of the inflammatory response. However, there are few studies evaluating the in vitro effect of CS and HA on MMP-3 synthesis in human chondrocyte cultures from OA patients. Thus, the aim of the present study was to analyze the effect of CS and HA (500-730 kDa) on MMP-3 synthesis induced by interleukin-1beta (IL-1beta) in chondrocytes from patients with hip OA. Chondrocyte cultures were incubated for 48 h with IL-1beta (2.5 ng/ml) in the absence or presence of different HA 500-730 kDa (Hyalgan, Bioibérica Farma, Barcelona, Spain) concentrations, or alternatively, CS (Condro.san, Bioibérica Farma) at concentrations of 10, 50, 100, 150, 200 and 1,000 microg/ml. The results revealed that both CS and HA (500-730 kDa) inhibited MMP-3 synthesis induced by IL-1beta in human OA chondrocytes. Specifically, CS and HA (500-730 kDa) reduced MMP-3 expression levels at all tested concentrations. Therefore, our study provides new data on the mechanism of action of these drugs, which could help to explain their clinical efficacy in OA patients.</p>\",\"PeriodicalId\":11336,\"journal\":{\"name\":\"Drugs under experimental and clinical research\",\"volume\":\"31 2\",\"pages\":\"71-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drugs under experimental and clinical research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drugs under experimental and clinical research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chondroitin sulfate and hyaluronic acid (500-730 kda) inhibit stromelysin-1 synthesis in human osteoarthritic chondrocytes.
Chondroitin sulfate (CS) and 500-730 kDa hyaluronic acid (HA) are symptomatic slow-acting drugs for the treatment of osteoarthritis (OA). In addition, a growing body of evidence suggests a role for CS and this specific HA as modifiers of the course of OA. The therapeutic efficacy of CS and HA lies in their different mechanisms of action. Stromelysin-1 (metalloprotease-3 [MMP-3]) is a cartilage proteolytic enzyme, which induces cartilage destruction and acts as a mediator of the inflammatory response. However, there are few studies evaluating the in vitro effect of CS and HA on MMP-3 synthesis in human chondrocyte cultures from OA patients. Thus, the aim of the present study was to analyze the effect of CS and HA (500-730 kDa) on MMP-3 synthesis induced by interleukin-1beta (IL-1beta) in chondrocytes from patients with hip OA. Chondrocyte cultures were incubated for 48 h with IL-1beta (2.5 ng/ml) in the absence or presence of different HA 500-730 kDa (Hyalgan, Bioibérica Farma, Barcelona, Spain) concentrations, or alternatively, CS (Condro.san, Bioibérica Farma) at concentrations of 10, 50, 100, 150, 200 and 1,000 microg/ml. The results revealed that both CS and HA (500-730 kDa) inhibited MMP-3 synthesis induced by IL-1beta in human OA chondrocytes. Specifically, CS and HA (500-730 kDa) reduced MMP-3 expression levels at all tested concentrations. Therefore, our study provides new data on the mechanism of action of these drugs, which could help to explain their clinical efficacy in OA patients.