Atsushi Katafuchi, Aya Matsuo, Hiroaki Terato, Yoshihiko Ohyama, Hiroshi Ide
{"title":"DNA糖基化酶修复氧化胞嘧啶损伤。","authors":"Atsushi Katafuchi, Aya Matsuo, Hiroaki Terato, Yoshihiko Ohyama, Hiroshi Ide","doi":"10.1093/nass/3.1.269","DOIUrl":null,"url":null,"abstract":"<p><p>5-Hydroxyuracil (HOU) and 5-hydroxycytosine (HOC) are major oxidative lesions of cytosine with mutagenic potentials. Therefore, HOU and HOC need to be removed from DNA to avoid mutation. In this study, oligonucleotide substrates containing HOU and HOC were synthesized by DNA polymerase reactions and tested for DNA glycosylases. Ung exhibited an extremely low activity for HOU as compared to uracil (U). In contrast, hSMUG1 excised HOU and U with a comparable efficiency. Ung and hSMUG1 did not excise HOC.</p>","PeriodicalId":86149,"journal":{"name":"Nucleic acids research. Supplement (2001)","volume":" 3","pages":"269-70"},"PeriodicalIF":0.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/nass/3.1.269","citationCount":"4","resultStr":"{\"title\":\"Repair of oxidative cytosine damage by DNA glycosylases.\",\"authors\":\"Atsushi Katafuchi, Aya Matsuo, Hiroaki Terato, Yoshihiko Ohyama, Hiroshi Ide\",\"doi\":\"10.1093/nass/3.1.269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>5-Hydroxyuracil (HOU) and 5-hydroxycytosine (HOC) are major oxidative lesions of cytosine with mutagenic potentials. Therefore, HOU and HOC need to be removed from DNA to avoid mutation. In this study, oligonucleotide substrates containing HOU and HOC were synthesized by DNA polymerase reactions and tested for DNA glycosylases. Ung exhibited an extremely low activity for HOU as compared to uracil (U). In contrast, hSMUG1 excised HOU and U with a comparable efficiency. Ung and hSMUG1 did not excise HOC.</p>\",\"PeriodicalId\":86149,\"journal\":{\"name\":\"Nucleic acids research. Supplement (2001)\",\"volume\":\" 3\",\"pages\":\"269-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/nass/3.1.269\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic acids research. Supplement (2001)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/nass/3.1.269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acids research. Supplement (2001)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nass/3.1.269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Repair of oxidative cytosine damage by DNA glycosylases.
5-Hydroxyuracil (HOU) and 5-hydroxycytosine (HOC) are major oxidative lesions of cytosine with mutagenic potentials. Therefore, HOU and HOC need to be removed from DNA to avoid mutation. In this study, oligonucleotide substrates containing HOU and HOC were synthesized by DNA polymerase reactions and tested for DNA glycosylases. Ung exhibited an extremely low activity for HOU as compared to uracil (U). In contrast, hSMUG1 excised HOU and U with a comparable efficiency. Ung and hSMUG1 did not excise HOC.