{"title":"利用地球化学方法确定古代白色大理石的来源","authors":"Walter Prochaska","doi":"10.1007/s00710-023-00833-2","DOIUrl":null,"url":null,"abstract":"<div><p>“Multi-method-approach” has now been for many years the buzzword in marble provenance analysis. Nevertheless a true combination of the results of different analytical methods is rarely applied in the sense of the combined simultaneous use of a large number of analytically obtained numerical variables. It is demonstrated here that the combination of data from isotope analysis, chemical data, and data from the chemical analysis of inclusion fluids of an artefact and of course in combination with a corresponding database enhances substantially the accuracy of marble provenance analysis. It is explicitly pointed out that the unchallenged collection of data of the chemical composition of marbles from different sources (and different analytical procedures) most probably implies severe differences in their comparability. Exemplarily presented is the nearly perfect discrimination of the most important fine-grained marbles and furthermore the possibility of the intra-site discrimination of the three Carrara districts and the assignment of two portrait heads to the Carrara Torano quarries.</p></div>","PeriodicalId":18547,"journal":{"name":"Mineralogy and Petrology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00710-023-00833-2.pdf","citationCount":"1","resultStr":"{\"title\":\"The use of geochemical methods to pinpoint the origin of ancient white marbles\",\"authors\":\"Walter Prochaska\",\"doi\":\"10.1007/s00710-023-00833-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>“Multi-method-approach” has now been for many years the buzzword in marble provenance analysis. Nevertheless a true combination of the results of different analytical methods is rarely applied in the sense of the combined simultaneous use of a large number of analytically obtained numerical variables. It is demonstrated here that the combination of data from isotope analysis, chemical data, and data from the chemical analysis of inclusion fluids of an artefact and of course in combination with a corresponding database enhances substantially the accuracy of marble provenance analysis. It is explicitly pointed out that the unchallenged collection of data of the chemical composition of marbles from different sources (and different analytical procedures) most probably implies severe differences in their comparability. Exemplarily presented is the nearly perfect discrimination of the most important fine-grained marbles and furthermore the possibility of the intra-site discrimination of the three Carrara districts and the assignment of two portrait heads to the Carrara Torano quarries.</p></div>\",\"PeriodicalId\":18547,\"journal\":{\"name\":\"Mineralogy and Petrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00710-023-00833-2.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralogy and Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00710-023-00833-2\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00710-023-00833-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
The use of geochemical methods to pinpoint the origin of ancient white marbles
“Multi-method-approach” has now been for many years the buzzword in marble provenance analysis. Nevertheless a true combination of the results of different analytical methods is rarely applied in the sense of the combined simultaneous use of a large number of analytically obtained numerical variables. It is demonstrated here that the combination of data from isotope analysis, chemical data, and data from the chemical analysis of inclusion fluids of an artefact and of course in combination with a corresponding database enhances substantially the accuracy of marble provenance analysis. It is explicitly pointed out that the unchallenged collection of data of the chemical composition of marbles from different sources (and different analytical procedures) most probably implies severe differences in their comparability. Exemplarily presented is the nearly perfect discrimination of the most important fine-grained marbles and furthermore the possibility of the intra-site discrimination of the three Carrara districts and the assignment of two portrait heads to the Carrara Torano quarries.
期刊介绍:
Mineralogy and Petrology welcomes manuscripts from the classical fields of mineralogy, igneous and metamorphic petrology, geochemistry, crystallography, as well as their applications in academic experimentation and research, materials science and engineering, for technology, industry, environment, or society. The journal strongly promotes cross-fertilization among Earth-scientific and applied materials-oriented disciplines. Purely descriptive manuscripts on regional topics will not be considered.
Mineralogy and Petrology was founded in 1872 by Gustav Tschermak as "Mineralogische und Petrographische Mittheilungen". It is one of Europe''s oldest geoscience journals. Former editors include outstanding names such as Gustav Tschermak, Friedrich Becke, Felix Machatschki, Josef Zemann, and Eugen F. Stumpfl.