{"title":"稳态分析表明,Akt对PTP1B的负反馈调控引起胰岛素刺激的GLUT4易位的双稳定性。","authors":"Lopamudra Giri, Vivek K Mutalik, K V Venkatesh","doi":"10.1186/1742-4682-1-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The phenomenon of switch-like response to graded input signal is the theme involved in various signaling pathways in living systems. Positive feedback loops or double negative feedback loops embedded with nonlinearity exhibit these switch-like bistable responses. Such feedback regulations exist in insulin signaling pathway as well.</p><p><strong>Methods: </strong>In the current manuscript, a steady state analysis of the metabolic insulin-signaling pathway is presented. The threshold concentration of insulin required for glucose transporter GLUT4 translocation was studied with variation in system parameters and component concentrations. The dose response curves of GLUT4 translocation at various concentration of insulin obtained by steady state analysis were quantified in-terms of half saturation constant.</p><p><strong>Results: </strong>We show that, insulin-stimulated GLUT4 translocation can operate as a bistable switch, which ensures that GLUT4 settles between two discrete, but mutually exclusive stable steady states. The threshold concentration of insulin required for GLUT4 translocation changes with variation in system parameters and component concentrations, thus providing insights into possible pathological conditions.</p><p><strong>Conclusion: </strong>A steady state analysis indicates that negative feedback regulation of phosphatase PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation. The threshold concentration of insulin required for GLUT4 translocation and the corresponding bistable response at different system parameters and component concentrations was compared with reported experimental observations on specific defects in regulation of the system.</p>","PeriodicalId":51195,"journal":{"name":"Theoretical Biology and Medical Modelling","volume":" ","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1742-4682-1-2","citationCount":"41","resultStr":"{\"title\":\"A steady state analysis indicates that negative feedback regulation of PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation.\",\"authors\":\"Lopamudra Giri, Vivek K Mutalik, K V Venkatesh\",\"doi\":\"10.1186/1742-4682-1-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The phenomenon of switch-like response to graded input signal is the theme involved in various signaling pathways in living systems. Positive feedback loops or double negative feedback loops embedded with nonlinearity exhibit these switch-like bistable responses. Such feedback regulations exist in insulin signaling pathway as well.</p><p><strong>Methods: </strong>In the current manuscript, a steady state analysis of the metabolic insulin-signaling pathway is presented. The threshold concentration of insulin required for glucose transporter GLUT4 translocation was studied with variation in system parameters and component concentrations. The dose response curves of GLUT4 translocation at various concentration of insulin obtained by steady state analysis were quantified in-terms of half saturation constant.</p><p><strong>Results: </strong>We show that, insulin-stimulated GLUT4 translocation can operate as a bistable switch, which ensures that GLUT4 settles between two discrete, but mutually exclusive stable steady states. The threshold concentration of insulin required for GLUT4 translocation changes with variation in system parameters and component concentrations, thus providing insights into possible pathological conditions.</p><p><strong>Conclusion: </strong>A steady state analysis indicates that negative feedback regulation of phosphatase PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation. The threshold concentration of insulin required for GLUT4 translocation and the corresponding bistable response at different system parameters and component concentrations was compared with reported experimental observations on specific defects in regulation of the system.</p>\",\"PeriodicalId\":51195,\"journal\":{\"name\":\"Theoretical Biology and Medical Modelling\",\"volume\":\" \",\"pages\":\"2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1742-4682-1-2\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Biology and Medical Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1742-4682-1-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Biology and Medical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1742-4682-1-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
A steady state analysis indicates that negative feedback regulation of PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation.
Background: The phenomenon of switch-like response to graded input signal is the theme involved in various signaling pathways in living systems. Positive feedback loops or double negative feedback loops embedded with nonlinearity exhibit these switch-like bistable responses. Such feedback regulations exist in insulin signaling pathway as well.
Methods: In the current manuscript, a steady state analysis of the metabolic insulin-signaling pathway is presented. The threshold concentration of insulin required for glucose transporter GLUT4 translocation was studied with variation in system parameters and component concentrations. The dose response curves of GLUT4 translocation at various concentration of insulin obtained by steady state analysis were quantified in-terms of half saturation constant.
Results: We show that, insulin-stimulated GLUT4 translocation can operate as a bistable switch, which ensures that GLUT4 settles between two discrete, but mutually exclusive stable steady states. The threshold concentration of insulin required for GLUT4 translocation changes with variation in system parameters and component concentrations, thus providing insights into possible pathological conditions.
Conclusion: A steady state analysis indicates that negative feedback regulation of phosphatase PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation. The threshold concentration of insulin required for GLUT4 translocation and the corresponding bistable response at different system parameters and component concentrations was compared with reported experimental observations on specific defects in regulation of the system.
期刊介绍:
Theoretical Biology and Medical Modelling is an open access peer-reviewed journal adopting a broad definition of "biology" and focusing on theoretical ideas and models associated with developments in biology and medicine. Mathematicians, biologists and clinicians of various specialisms, philosophers and historians of science are all contributing to the emergence of novel concepts in an age of systems biology, bioinformatics and computer modelling. This is the field in which Theoretical Biology and Medical Modelling operates. We welcome submissions that are technically sound and offering either improved understanding in biology and medicine or progress in theory or method.