{"title":"铀酰硅酸铀-α和铀-β的光谱变异性:多态性和发光","authors":"Martin Stark, Markus Noller","doi":"10.1007/s00269-022-01225-2","DOIUrl":null,"url":null,"abstract":"<div><p>The luminescence of the uranyl cation UO<sub>2</sub><sup>2+</sup> depends on the local crystalline environment and is sensitive to structural influences. Steady-state photoluminescence emission spectra of the related uranyl silicates uranophane-α, uranophane-β, sklodowskite and haiweeite from various locations are presented and discussed in the light of structure–property relation. The four mineral species were chosen for their close relationships: uranophane-α and uranophane-β are polymorphs and share the underlaying topology with sklodowskite. Haiweeite, with different topology, shares the composing elements Ca, U, Si, O with uranophane, while in sklodowskite Mg replaces Ca. All species show some variability in their spectra, parameterized as a variation of the centroid wavelength. Those variations are linked to defects and structural disorder, relevant in studies of uranyl speciation and migration. We present empiric spectra of the four mineral species with the least influence of structural disorder. As an unexpected feature, a prominent—partly dominating—double peak structure occurs in the case of uranophane-α only, while it is absent in the spectra of the other species. Considering a model of luminescent transitions in the uranyl ion in more detail, this observation is discussed in the light of the polymorphism of uranophane. We show evidence that variable amounts of uranophane-β phase embedded in uranophane-α are possibly at the origin of this spectral signature. Growth of those uranophane-β clusters might be induced by defects in the uranophane-α lattice and further promoted by the polymorphism of uranophane.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"50 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-022-01225-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Spectral variability of the uranyl silicates uranophane-α and uranophane-β: polymorphism and luminescence\",\"authors\":\"Martin Stark, Markus Noller\",\"doi\":\"10.1007/s00269-022-01225-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The luminescence of the uranyl cation UO<sub>2</sub><sup>2+</sup> depends on the local crystalline environment and is sensitive to structural influences. Steady-state photoluminescence emission spectra of the related uranyl silicates uranophane-α, uranophane-β, sklodowskite and haiweeite from various locations are presented and discussed in the light of structure–property relation. The four mineral species were chosen for their close relationships: uranophane-α and uranophane-β are polymorphs and share the underlaying topology with sklodowskite. Haiweeite, with different topology, shares the composing elements Ca, U, Si, O with uranophane, while in sklodowskite Mg replaces Ca. All species show some variability in their spectra, parameterized as a variation of the centroid wavelength. Those variations are linked to defects and structural disorder, relevant in studies of uranyl speciation and migration. We present empiric spectra of the four mineral species with the least influence of structural disorder. As an unexpected feature, a prominent—partly dominating—double peak structure occurs in the case of uranophane-α only, while it is absent in the spectra of the other species. Considering a model of luminescent transitions in the uranyl ion in more detail, this observation is discussed in the light of the polymorphism of uranophane. We show evidence that variable amounts of uranophane-β phase embedded in uranophane-α are possibly at the origin of this spectral signature. Growth of those uranophane-β clusters might be induced by defects in the uranophane-α lattice and further promoted by the polymorphism of uranophane.</p></div>\",\"PeriodicalId\":20132,\"journal\":{\"name\":\"Physics and Chemistry of Minerals\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00269-022-01225-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00269-022-01225-2\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-022-01225-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Spectral variability of the uranyl silicates uranophane-α and uranophane-β: polymorphism and luminescence
The luminescence of the uranyl cation UO22+ depends on the local crystalline environment and is sensitive to structural influences. Steady-state photoluminescence emission spectra of the related uranyl silicates uranophane-α, uranophane-β, sklodowskite and haiweeite from various locations are presented and discussed in the light of structure–property relation. The four mineral species were chosen for their close relationships: uranophane-α and uranophane-β are polymorphs and share the underlaying topology with sklodowskite. Haiweeite, with different topology, shares the composing elements Ca, U, Si, O with uranophane, while in sklodowskite Mg replaces Ca. All species show some variability in their spectra, parameterized as a variation of the centroid wavelength. Those variations are linked to defects and structural disorder, relevant in studies of uranyl speciation and migration. We present empiric spectra of the four mineral species with the least influence of structural disorder. As an unexpected feature, a prominent—partly dominating—double peak structure occurs in the case of uranophane-α only, while it is absent in the spectra of the other species. Considering a model of luminescent transitions in the uranyl ion in more detail, this observation is discussed in the light of the polymorphism of uranophane. We show evidence that variable amounts of uranophane-β phase embedded in uranophane-α are possibly at the origin of this spectral signature. Growth of those uranophane-β clusters might be induced by defects in the uranophane-α lattice and further promoted by the polymorphism of uranophane.
期刊介绍:
Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are:
-Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.)
-General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.)
-Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.)
-Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.)
-Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems
-Electron microscopy in support of physical and chemical studies
-Computational methods in the study of the structure and properties of minerals
-Mineral surfaces (experimental methods, structure and properties)