{"title":"一种基于卷积分块注意模块和无监督学习网络的单机器人图像阴影检测方法。","authors":"Jun Zhang, Junjun Liu","doi":"10.3389/fnbot.2022.1059497","DOIUrl":null,"url":null,"abstract":"<p><p>Shadow detection plays a very important role in image processing. Although many algorithms have been proposed in different environments, it is still a challenging task to detect shadows in natural scenes. In this paper, we propose a convolutional block attention module (CBAM) and unsupervised domain adaptation adversarial learning network for single image shadow detection. The new method mainly contains three steps. Firstly, in order to reduce the data deviation between the domains, the hierarchical domain adaptation strategy is adopted to calibrate the feature distribution from low level to high level between the source domain and the target domain. Secondly, in order to enhance the soft shadow detection ability of the model, the boundary adversarial branch is proposed to obtain structured shadow boundary. Meanwhile, a CBAM is added in the model to reduce the correlation between different semantic information. Thirdly, the entropy adversarial branch is combined to further suppress the high uncertainty at the boundary of the prediction results, and it obtains the smooth and accurate shadow boundary. Finally, we conduct abundant experiments on public datasets, the RMSE has the lowest values with 9.6 and BER with 6.6 on ISTD dataset, the results show that the proposed shadow detection method has better edge structure compared with the existing deep learning detection methods.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"1059497"},"PeriodicalIF":4.6000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679151/pdf/","citationCount":"1","resultStr":"{\"title\":\"A novel single robot image shadow detection method based on convolutional block attention module and unsupervised learning network.\",\"authors\":\"Jun Zhang, Junjun Liu\",\"doi\":\"10.3389/fnbot.2022.1059497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Shadow detection plays a very important role in image processing. Although many algorithms have been proposed in different environments, it is still a challenging task to detect shadows in natural scenes. In this paper, we propose a convolutional block attention module (CBAM) and unsupervised domain adaptation adversarial learning network for single image shadow detection. The new method mainly contains three steps. Firstly, in order to reduce the data deviation between the domains, the hierarchical domain adaptation strategy is adopted to calibrate the feature distribution from low level to high level between the source domain and the target domain. Secondly, in order to enhance the soft shadow detection ability of the model, the boundary adversarial branch is proposed to obtain structured shadow boundary. Meanwhile, a CBAM is added in the model to reduce the correlation between different semantic information. Thirdly, the entropy adversarial branch is combined to further suppress the high uncertainty at the boundary of the prediction results, and it obtains the smooth and accurate shadow boundary. Finally, we conduct abundant experiments on public datasets, the RMSE has the lowest values with 9.6 and BER with 6.6 on ISTD dataset, the results show that the proposed shadow detection method has better edge structure compared with the existing deep learning detection methods.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"1059497\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679151/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3389/fnbot.2022.1059497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2022.1059497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A novel single robot image shadow detection method based on convolutional block attention module and unsupervised learning network.
Shadow detection plays a very important role in image processing. Although many algorithms have been proposed in different environments, it is still a challenging task to detect shadows in natural scenes. In this paper, we propose a convolutional block attention module (CBAM) and unsupervised domain adaptation adversarial learning network for single image shadow detection. The new method mainly contains three steps. Firstly, in order to reduce the data deviation between the domains, the hierarchical domain adaptation strategy is adopted to calibrate the feature distribution from low level to high level between the source domain and the target domain. Secondly, in order to enhance the soft shadow detection ability of the model, the boundary adversarial branch is proposed to obtain structured shadow boundary. Meanwhile, a CBAM is added in the model to reduce the correlation between different semantic information. Thirdly, the entropy adversarial branch is combined to further suppress the high uncertainty at the boundary of the prediction results, and it obtains the smooth and accurate shadow boundary. Finally, we conduct abundant experiments on public datasets, the RMSE has the lowest values with 9.6 and BER with 6.6 on ISTD dataset, the results show that the proposed shadow detection method has better edge structure compared with the existing deep learning detection methods.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.