{"title":"3D打印抗感染导尿管的探索:抗导尿管相关尿路感染(CAUTIs)的材料和方法综述","authors":"Archana Menon, Rubini Durairajan, Ramyadevi Durai, Nithyanand Paramasivam, VedhaHari B Narayanan","doi":"10.1615/CritRevTherDrugCarrierSyst.2022040452","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) printing is a pioneering technology that has gained increased popularity in the fields of tissue engineering, drug design, drug delivery systems and biomedical devices. Thus, it enables us to explore this technique for fabricating 3D-printed catheters. Owing to its enhanced productivity and cost-efficiency, this technique can be utilized to fabricate any material for manufacturing or designing catheters with antimicrobial properties. From 1930s, Foley's catheter had been widely used to drain the urinary bladder of patients with impaired bladder function. Despite the complications like catheter-associated urinary tract infections (CAUTIs), kidney damage, chronic infections, encrustations and personal discomfort during inflation of the balloon, Foley's catheter was used universally without any changes in product design. Currently, marketed catheters have been reported for reducing CAUTI, but the prevention of limitations by coating drugs onto the catheter is very expensive. Altering the physical properties of the catheter by biopolymer blend might ease the discomfort. Thus, new technologies have to be adopted to manufacture ideal catheters that are biocompatible and provide antimicrobial and anti-fouling properties. Herein, we provide an overview of 3D printing techniques along with different materials opted for manufacturing catheters to overcome the existing challenges and limitations.</p>","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration of 3D Printing of Anti-Infective Urinary Catheters: Materials and Approaches to Combat Catheter-Associated Urinary Tract Infections (CAUTIs) - A Review.\",\"authors\":\"Archana Menon, Rubini Durairajan, Ramyadevi Durai, Nithyanand Paramasivam, VedhaHari B Narayanan\",\"doi\":\"10.1615/CritRevTherDrugCarrierSyst.2022040452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional (3D) printing is a pioneering technology that has gained increased popularity in the fields of tissue engineering, drug design, drug delivery systems and biomedical devices. Thus, it enables us to explore this technique for fabricating 3D-printed catheters. Owing to its enhanced productivity and cost-efficiency, this technique can be utilized to fabricate any material for manufacturing or designing catheters with antimicrobial properties. From 1930s, Foley's catheter had been widely used to drain the urinary bladder of patients with impaired bladder function. Despite the complications like catheter-associated urinary tract infections (CAUTIs), kidney damage, chronic infections, encrustations and personal discomfort during inflation of the balloon, Foley's catheter was used universally without any changes in product design. Currently, marketed catheters have been reported for reducing CAUTI, but the prevention of limitations by coating drugs onto the catheter is very expensive. Altering the physical properties of the catheter by biopolymer blend might ease the discomfort. Thus, new technologies have to be adopted to manufacture ideal catheters that are biocompatible and provide antimicrobial and anti-fouling properties. Herein, we provide an overview of 3D printing techniques along with different materials opted for manufacturing catheters to overcome the existing challenges and limitations.</p>\",\"PeriodicalId\":50614,\"journal\":{\"name\":\"Critical Reviews in Therapeutic Drug Carrier Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Therapeutic Drug Carrier Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2022040452\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Therapeutic Drug Carrier Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2022040452","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Exploration of 3D Printing of Anti-Infective Urinary Catheters: Materials and Approaches to Combat Catheter-Associated Urinary Tract Infections (CAUTIs) - A Review.
Three-dimensional (3D) printing is a pioneering technology that has gained increased popularity in the fields of tissue engineering, drug design, drug delivery systems and biomedical devices. Thus, it enables us to explore this technique for fabricating 3D-printed catheters. Owing to its enhanced productivity and cost-efficiency, this technique can be utilized to fabricate any material for manufacturing or designing catheters with antimicrobial properties. From 1930s, Foley's catheter had been widely used to drain the urinary bladder of patients with impaired bladder function. Despite the complications like catheter-associated urinary tract infections (CAUTIs), kidney damage, chronic infections, encrustations and personal discomfort during inflation of the balloon, Foley's catheter was used universally without any changes in product design. Currently, marketed catheters have been reported for reducing CAUTI, but the prevention of limitations by coating drugs onto the catheter is very expensive. Altering the physical properties of the catheter by biopolymer blend might ease the discomfort. Thus, new technologies have to be adopted to manufacture ideal catheters that are biocompatible and provide antimicrobial and anti-fouling properties. Herein, we provide an overview of 3D printing techniques along with different materials opted for manufacturing catheters to overcome the existing challenges and limitations.
期刊介绍:
Therapeutic uses of a variety of drug carrier systems have significant impact on the treatment and potential cure of many chronic diseases, including cancer, diabetes mellitus, psoriasis, parkinsons, Alzheimer, rheumatoid arthritis, HIV infection, infectious diseases, asthma, and drug addiction. Scientific efforts in these areas are multidisciplinary, involving the physical, biological, medical, pharmaceutical, biological materials, and engineering fields.
Articles concerning this field appear in a wide variety of journals. With the vast increase in the number of articles and the tendency to fragment science, it becomes increasingly difficult to keep abreast of the literature and to sort out and evaluate the importance and reliability of the data, especially when proprietary considerations are involved. Abstracts and noncritical articles often do not provide a sufficiently reliable basis for proper assessment of a given field without the additional perusal of the original literature. This journal bridges this gap by publishing authoritative, objective, comprehensive multidisciplinary critical review papers with emphasis on formulation and delivery systems. Both invited and contributed articles are subject to peer review.