Hyangju Kang, Daniel Kim, Kyungmin Min, Minhee Park, Seok-Hyun Kim, Eun-Ju Sohn, Bo-Hwa Choi, Inhwan Hwang
{"title":"含有Omicron受体结合域的SARS-CoV-2刺突蛋白重组蛋白可诱导产生高Omicron特异性中和抗体。","authors":"Hyangju Kang, Daniel Kim, Kyungmin Min, Minhee Park, Seok-Hyun Kim, Eun-Ju Sohn, Bo-Hwa Choi, Inhwan Hwang","doi":"10.7774/cevr.2022.11.3.285","DOIUrl":null,"url":null,"abstract":"<p><p>Various vaccines have been developed to fight severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 pandemic. However, new variants of SARS-CoV-2 undermine the effort to fight SARS-CoV-2. Here, we produced S proteins harboring the receptor-binding domain (RBD) of the Omicron variant in plants. Plant-produced S proteins together with adjuvant CIA09A triggered strong immune responses in mice. Antibodies in serum inhibited interaction of recombinant human angiotensin-converting enzyme 2 with RBD of the Omicron variant, but not RBD of other variants. These results suggest that antibodies induced by RBD of the Omicron variant are highly specific for the Omicron RBD, but not for that of other variants.</p>","PeriodicalId":51768,"journal":{"name":"Clinical and Experimental Vaccine Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/94/5d/cevr-11-285.PMC9691866.pdf","citationCount":"1","resultStr":"{\"title\":\"Recombinant proteins of spike protein of SARS-CoV-2 with the Omicron receptor-binding domain induce production of highly Omicron-specific neutralizing antibodies.\",\"authors\":\"Hyangju Kang, Daniel Kim, Kyungmin Min, Minhee Park, Seok-Hyun Kim, Eun-Ju Sohn, Bo-Hwa Choi, Inhwan Hwang\",\"doi\":\"10.7774/cevr.2022.11.3.285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Various vaccines have been developed to fight severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 pandemic. However, new variants of SARS-CoV-2 undermine the effort to fight SARS-CoV-2. Here, we produced S proteins harboring the receptor-binding domain (RBD) of the Omicron variant in plants. Plant-produced S proteins together with adjuvant CIA09A triggered strong immune responses in mice. Antibodies in serum inhibited interaction of recombinant human angiotensin-converting enzyme 2 with RBD of the Omicron variant, but not RBD of other variants. These results suggest that antibodies induced by RBD of the Omicron variant are highly specific for the Omicron RBD, but not for that of other variants.</p>\",\"PeriodicalId\":51768,\"journal\":{\"name\":\"Clinical and Experimental Vaccine Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/94/5d/cevr-11-285.PMC9691866.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Vaccine Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7774/cevr.2022.11.3.285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Vaccine Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7774/cevr.2022.11.3.285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Recombinant proteins of spike protein of SARS-CoV-2 with the Omicron receptor-binding domain induce production of highly Omicron-specific neutralizing antibodies.
Various vaccines have been developed to fight severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 pandemic. However, new variants of SARS-CoV-2 undermine the effort to fight SARS-CoV-2. Here, we produced S proteins harboring the receptor-binding domain (RBD) of the Omicron variant in plants. Plant-produced S proteins together with adjuvant CIA09A triggered strong immune responses in mice. Antibodies in serum inhibited interaction of recombinant human angiotensin-converting enzyme 2 with RBD of the Omicron variant, but not RBD of other variants. These results suggest that antibodies induced by RBD of the Omicron variant are highly specific for the Omicron RBD, but not for that of other variants.
期刊介绍:
Clin Exp Vaccine Res, the official English journal of the Korean Vaccine Society, is an international, peer reviewed, and open-access journal. It covers all areas related to vaccines and vaccination. Clin Exp Vaccine Res publishes editorials, review articles, special articles, original articles, case reports, brief communications, and correspondences covering a wide range of clinical and experimental subjects including vaccines and vaccination for human and animals against infectious diseases caused by viruses, bacteria, parasites and tumor. The scope of the journal is to disseminate information that may contribute to elaborate vaccine development and vaccination strategies targeting infectious diseases and tumors in human and animals. Relevant topics range from experimental approaches to (pre)clinical trials for the vaccine research based on, but not limited to, basic laboratory, translational, and (pre)clinical investigations, epidemiology of infectious diseases and progression of all aspects in the health related issues. It is published printed and open accessed online issues (https://ecevr.org) two times per year in 31 January and 31 July. Clin Exp Vaccine Res is linked to many international databases and is made freely available to institutions and individuals worldwide