{"title":"基于深度神经网络的不可逆电穿孔区自动预测,为治疗方案的初步研究。","authors":"Amir Khorasani","doi":"10.1080/15368378.2022.2114493","DOIUrl":null,"url":null,"abstract":"<p><p>The primary purpose of cancer treatment with irreversible electroporation (IRE) is to maximize tumor damage and minimize surrounding healthy tissue damage. Finite element analysis is one of the popular ways to calculate electric field and cell kill probability in IRE. However, this method also has limitations. This paper will focus on using a deep neural network (DNN) in IRE to predict irreversible electroporated regions for treatment planning purposes. COMSOL Multiphysics was used to simulate the IRE. The electric conductivity change during IRE was considered to create accurate data sets of electric field distribution and cell kill probability distributions. We used eight pulses with a pulse width of 100 μs, frequency of 1 Hz, and different voltages. To create masks for DNN training, a 90% cell kill probability contour was used. After data set creation, U-Net architecture was trained to predict irreversible electroporated regions. In this study, the average U-Net DICE coefficient on test data was 0.96. Also, the average accuracy of U-Net for predicting irreversible electroporated regions was 0.97. As far as we are aware, this is the first time that U-Net was used to predict an irreversible electroporated region in IRE. The present study provides significant evidence for U-Net's use for predicting an irreversible electroporated region in treatment planning.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"379-388"},"PeriodicalIF":1.5000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated irreversible electroporated region prediction using deep neural network, a preliminary study for treatment planning.\",\"authors\":\"Amir Khorasani\",\"doi\":\"10.1080/15368378.2022.2114493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The primary purpose of cancer treatment with irreversible electroporation (IRE) is to maximize tumor damage and minimize surrounding healthy tissue damage. Finite element analysis is one of the popular ways to calculate electric field and cell kill probability in IRE. However, this method also has limitations. This paper will focus on using a deep neural network (DNN) in IRE to predict irreversible electroporated regions for treatment planning purposes. COMSOL Multiphysics was used to simulate the IRE. The electric conductivity change during IRE was considered to create accurate data sets of electric field distribution and cell kill probability distributions. We used eight pulses with a pulse width of 100 μs, frequency of 1 Hz, and different voltages. To create masks for DNN training, a 90% cell kill probability contour was used. After data set creation, U-Net architecture was trained to predict irreversible electroporated regions. In this study, the average U-Net DICE coefficient on test data was 0.96. Also, the average accuracy of U-Net for predicting irreversible electroporated regions was 0.97. As far as we are aware, this is the first time that U-Net was used to predict an irreversible electroporated region in IRE. The present study provides significant evidence for U-Net's use for predicting an irreversible electroporated region in treatment planning.</p>\",\"PeriodicalId\":50544,\"journal\":{\"name\":\"Electromagnetic Biology and Medicine\",\"volume\":\" \",\"pages\":\"379-388\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electromagnetic Biology and Medicine\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2022.2114493\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2022.2114493","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Automated irreversible electroporated region prediction using deep neural network, a preliminary study for treatment planning.
The primary purpose of cancer treatment with irreversible electroporation (IRE) is to maximize tumor damage and minimize surrounding healthy tissue damage. Finite element analysis is one of the popular ways to calculate electric field and cell kill probability in IRE. However, this method also has limitations. This paper will focus on using a deep neural network (DNN) in IRE to predict irreversible electroporated regions for treatment planning purposes. COMSOL Multiphysics was used to simulate the IRE. The electric conductivity change during IRE was considered to create accurate data sets of electric field distribution and cell kill probability distributions. We used eight pulses with a pulse width of 100 μs, frequency of 1 Hz, and different voltages. To create masks for DNN training, a 90% cell kill probability contour was used. After data set creation, U-Net architecture was trained to predict irreversible electroporated regions. In this study, the average U-Net DICE coefficient on test data was 0.96. Also, the average accuracy of U-Net for predicting irreversible electroporated regions was 0.97. As far as we are aware, this is the first time that U-Net was used to predict an irreversible electroporated region in IRE. The present study provides significant evidence for U-Net's use for predicting an irreversible electroporated region in treatment planning.
期刊介绍:
Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.