基于深度神经网络的不可逆电穿孔区自动预测,为治疗方案的初步研究。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2022-10-02 Epub Date: 2022-08-22 DOI:10.1080/15368378.2022.2114493
Amir Khorasani
{"title":"基于深度神经网络的不可逆电穿孔区自动预测,为治疗方案的初步研究。","authors":"Amir Khorasani","doi":"10.1080/15368378.2022.2114493","DOIUrl":null,"url":null,"abstract":"<p><p>The primary purpose of cancer treatment with irreversible electroporation (IRE) is to maximize tumor damage and minimize surrounding healthy tissue damage. Finite element analysis is one of the popular ways to calculate electric field and cell kill probability in IRE. However, this method also has limitations. This paper will focus on using a deep neural network (DNN) in IRE to predict irreversible electroporated regions for treatment planning purposes. COMSOL Multiphysics was used to simulate the IRE. The electric conductivity change during IRE was considered to create accurate data sets of electric field distribution and cell kill probability distributions. We used eight pulses with a pulse width of 100 μs, frequency of 1 Hz, and different voltages. To create masks for DNN training, a 90% cell kill probability contour was used. After data set creation, U-Net architecture was trained to predict irreversible electroporated regions. In this study, the average U-Net DICE coefficient on test data was 0.96. Also, the average accuracy of U-Net for predicting irreversible electroporated regions was 0.97. As far as we are aware, this is the first time that U-Net was used to predict an irreversible electroporated region in IRE. The present study provides significant evidence for U-Net's use for predicting an irreversible electroporated region in treatment planning.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated irreversible electroporated region prediction using deep neural network, a preliminary study for treatment planning.\",\"authors\":\"Amir Khorasani\",\"doi\":\"10.1080/15368378.2022.2114493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The primary purpose of cancer treatment with irreversible electroporation (IRE) is to maximize tumor damage and minimize surrounding healthy tissue damage. Finite element analysis is one of the popular ways to calculate electric field and cell kill probability in IRE. However, this method also has limitations. This paper will focus on using a deep neural network (DNN) in IRE to predict irreversible electroporated regions for treatment planning purposes. COMSOL Multiphysics was used to simulate the IRE. The electric conductivity change during IRE was considered to create accurate data sets of electric field distribution and cell kill probability distributions. We used eight pulses with a pulse width of 100 μs, frequency of 1 Hz, and different voltages. To create masks for DNN training, a 90% cell kill probability contour was used. After data set creation, U-Net architecture was trained to predict irreversible electroporated regions. In this study, the average U-Net DICE coefficient on test data was 0.96. Also, the average accuracy of U-Net for predicting irreversible electroporated regions was 0.97. As far as we are aware, this is the first time that U-Net was used to predict an irreversible electroporated region in IRE. The present study provides significant evidence for U-Net's use for predicting an irreversible electroporated region in treatment planning.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2022.2114493\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2022.2114493","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

不可逆电穿孔(IRE)治疗癌症的主要目的是使肿瘤损伤最大化,使周围健康组织损伤最小化。有限元分析是计算电场和细胞杀伤概率的常用方法之一。然而,这种方法也有局限性。本文将着重于在IRE中使用深度神经网络(DNN)来预测不可逆电穿孔区域,以实现治疗计划的目的。采用COMSOL Multiphysics对IRE进行仿真。考虑IRE过程中电导率的变化,可以建立准确的电场分布和细胞杀伤概率分布数据集。我们使用了8个脉冲,脉冲宽度为100 μs,频率为1 Hz,电压不同。为了创建DNN训练的掩模,使用了90%细胞死亡概率的轮廓。在数据集创建后,U-Net架构被训练来预测不可逆电穿孔区域。在本研究中,测试数据的平均U-Net DICE系数为0.96。U-Net预测不可逆电穿孔区的平均准确度为0.97。据我们所知,这是首次使用U-Net来预测IRE中的不可逆电穿孔区。本研究为U-Net在治疗计划中用于预测不可逆电穿孔区域提供了重要证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated irreversible electroporated region prediction using deep neural network, a preliminary study for treatment planning.

The primary purpose of cancer treatment with irreversible electroporation (IRE) is to maximize tumor damage and minimize surrounding healthy tissue damage. Finite element analysis is one of the popular ways to calculate electric field and cell kill probability in IRE. However, this method also has limitations. This paper will focus on using a deep neural network (DNN) in IRE to predict irreversible electroporated regions for treatment planning purposes. COMSOL Multiphysics was used to simulate the IRE. The electric conductivity change during IRE was considered to create accurate data sets of electric field distribution and cell kill probability distributions. We used eight pulses with a pulse width of 100 μs, frequency of 1 Hz, and different voltages. To create masks for DNN training, a 90% cell kill probability contour was used. After data set creation, U-Net architecture was trained to predict irreversible electroporated regions. In this study, the average U-Net DICE coefficient on test data was 0.96. Also, the average accuracy of U-Net for predicting irreversible electroporated regions was 0.97. As far as we are aware, this is the first time that U-Net was used to predict an irreversible electroporated region in IRE. The present study provides significant evidence for U-Net's use for predicting an irreversible electroporated region in treatment planning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信