Madhu Keerthana Yagnavajjula , Paavo Alku , Krothapalli Sreenivasa Rao , Pabitra Mitra
{"title":"使用epstral特征的费舍尔向量表示法检测神经源性嗓音疾病","authors":"Madhu Keerthana Yagnavajjula , Paavo Alku , Krothapalli Sreenivasa Rao , Pabitra Mitra","doi":"10.1016/j.jvoice.2022.10.016","DOIUrl":null,"url":null,"abstract":"<div><div>Neurogenic voice disorders (NVDs) are caused by damage or malfunction of the central or peripheral nervous system that controls vocal fold movement. In this paper, we investigate the potential of the Fisher vector (FV) encoding in automatic detection of people with NVDs. FVs are used to convert features from frame level (local descriptors) to utterance level (global descriptors). At the frame level, we extract two popular cepstral representations, namely, Mel-frequency cepstral coefficients (MFCCs) and perceptual linear prediction cepstral coefficients (PLPCCs), from acoustic voice signals. In addition, the MFCC features are also extracted from every frame of the glottal source signal computed using a glottal inverse filtering (GIF) technique. The global descriptors derived from the local descriptors are used to train a support vector machine (SVM) classifier. Experiments are conducted using voice signals from 80 healthy speakers and 80 patients with NVDs (40 with spasmodic dysphonia (SD) and 40 with recurrent laryngeal nerve palsy (RLNP)) taken from the Saarbruecken voice disorder (SVD) database. The overall results indicate that the use of the FV encoding leads to better identification of people with NVDs, compared to the defacto temporal encoding. Furthermore, the SVM trained using the combination of FVs derived from the cepstral and glottal features provides the overall best detection performance.</div></div>","PeriodicalId":49954,"journal":{"name":"Journal of Voice","volume":"39 3","pages":"Pages 757-763"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Neurogenic Voice Disorders Using the Fisher Vector Representation of Cepstral Features\",\"authors\":\"Madhu Keerthana Yagnavajjula , Paavo Alku , Krothapalli Sreenivasa Rao , Pabitra Mitra\",\"doi\":\"10.1016/j.jvoice.2022.10.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neurogenic voice disorders (NVDs) are caused by damage or malfunction of the central or peripheral nervous system that controls vocal fold movement. In this paper, we investigate the potential of the Fisher vector (FV) encoding in automatic detection of people with NVDs. FVs are used to convert features from frame level (local descriptors) to utterance level (global descriptors). At the frame level, we extract two popular cepstral representations, namely, Mel-frequency cepstral coefficients (MFCCs) and perceptual linear prediction cepstral coefficients (PLPCCs), from acoustic voice signals. In addition, the MFCC features are also extracted from every frame of the glottal source signal computed using a glottal inverse filtering (GIF) technique. The global descriptors derived from the local descriptors are used to train a support vector machine (SVM) classifier. Experiments are conducted using voice signals from 80 healthy speakers and 80 patients with NVDs (40 with spasmodic dysphonia (SD) and 40 with recurrent laryngeal nerve palsy (RLNP)) taken from the Saarbruecken voice disorder (SVD) database. The overall results indicate that the use of the FV encoding leads to better identification of people with NVDs, compared to the defacto temporal encoding. Furthermore, the SVM trained using the combination of FVs derived from the cepstral and glottal features provides the overall best detection performance.</div></div>\",\"PeriodicalId\":49954,\"journal\":{\"name\":\"Journal of Voice\",\"volume\":\"39 3\",\"pages\":\"Pages 757-763\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Voice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0892199722003228\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Voice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892199722003228","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
Detection of Neurogenic Voice Disorders Using the Fisher Vector Representation of Cepstral Features
Neurogenic voice disorders (NVDs) are caused by damage or malfunction of the central or peripheral nervous system that controls vocal fold movement. In this paper, we investigate the potential of the Fisher vector (FV) encoding in automatic detection of people with NVDs. FVs are used to convert features from frame level (local descriptors) to utterance level (global descriptors). At the frame level, we extract two popular cepstral representations, namely, Mel-frequency cepstral coefficients (MFCCs) and perceptual linear prediction cepstral coefficients (PLPCCs), from acoustic voice signals. In addition, the MFCC features are also extracted from every frame of the glottal source signal computed using a glottal inverse filtering (GIF) technique. The global descriptors derived from the local descriptors are used to train a support vector machine (SVM) classifier. Experiments are conducted using voice signals from 80 healthy speakers and 80 patients with NVDs (40 with spasmodic dysphonia (SD) and 40 with recurrent laryngeal nerve palsy (RLNP)) taken from the Saarbruecken voice disorder (SVD) database. The overall results indicate that the use of the FV encoding leads to better identification of people with NVDs, compared to the defacto temporal encoding. Furthermore, the SVM trained using the combination of FVs derived from the cepstral and glottal features provides the overall best detection performance.
期刊介绍:
The Journal of Voice is widely regarded as the world''s premiere journal for voice medicine and research. This peer-reviewed publication is listed in Index Medicus and is indexed by the Institute for Scientific Information. The journal contains articles written by experts throughout the world on all topics in voice sciences, voice medicine and surgery, and speech-language pathologists'' management of voice-related problems. The journal includes clinical articles, clinical research, and laboratory research. Members of the Foundation receive the journal as a benefit of membership.