Ji-Hong Xu, Jia-Ping Liang, Chu-Jun Zhu, Yu-Jun Lian
{"title":"间充质干细胞衍生的细胞外囊泡治疗肺动脉高压:临床前研究的综合综述。","authors":"Ji-Hong Xu, Jia-Ping Liang, Chu-Jun Zhu, Yu-Jun Lian","doi":"10.1155/2022/5451947","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Pulmonary hypertension (PH) is a type of clinical pathophysiological syndrome characterized by a progressive increase in pulmonary vascular resistance and subsequent progressive failure of the right heart function, and is a common complication of many diseases. Mesenchymal stem cells (MSCs) autonomously home to sites damaged by disease, repair damaged tissues, and participate in the regulation of systemic inflammation and immune responses, which have good clinical application prospects. Extracellular vesicles (EVs), such as exosomes and microvesicles, participate in various biological activities by regulating intercellular communication. Exosomes secreted into the extracellular environment also affect the host immune system. MSC-derived extracellular vesicles (MSC-EVs), as a mediator in the paracrine processes of MSCs, carry biologically active substances such as proteins, lipids, mRNA, and micro-RNA. MSC-EVs therapies, safer than cell-based treatments, have been shown to be effective in modulating macrophages to support anti-inflammatory phenotypes, which are strongly related to histological and functional benefits in preclinical models of pulmonary hypertension. The main effects of active substances and their potential medical value have attracted wide attention from researchers. This article reviews the role and relevant mechanisms of MSC-EVs in the treatment of pulmonary hypertension in recent studies and provides a basis for their future clinical applications.</p>\n </div>","PeriodicalId":16329,"journal":{"name":"Journal of interventional cardiology","volume":"2022 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652076/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mesenchymal Stem Cell-Derived Extracellular Vesicles Therapy for Pulmonary Hypertension: A Comprehensive Review of Preclinical Studies\",\"authors\":\"Ji-Hong Xu, Jia-Ping Liang, Chu-Jun Zhu, Yu-Jun Lian\",\"doi\":\"10.1155/2022/5451947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Pulmonary hypertension (PH) is a type of clinical pathophysiological syndrome characterized by a progressive increase in pulmonary vascular resistance and subsequent progressive failure of the right heart function, and is a common complication of many diseases. Mesenchymal stem cells (MSCs) autonomously home to sites damaged by disease, repair damaged tissues, and participate in the regulation of systemic inflammation and immune responses, which have good clinical application prospects. Extracellular vesicles (EVs), such as exosomes and microvesicles, participate in various biological activities by regulating intercellular communication. Exosomes secreted into the extracellular environment also affect the host immune system. MSC-derived extracellular vesicles (MSC-EVs), as a mediator in the paracrine processes of MSCs, carry biologically active substances such as proteins, lipids, mRNA, and micro-RNA. MSC-EVs therapies, safer than cell-based treatments, have been shown to be effective in modulating macrophages to support anti-inflammatory phenotypes, which are strongly related to histological and functional benefits in preclinical models of pulmonary hypertension. The main effects of active substances and their potential medical value have attracted wide attention from researchers. This article reviews the role and relevant mechanisms of MSC-EVs in the treatment of pulmonary hypertension in recent studies and provides a basis for their future clinical applications.</p>\\n </div>\",\"PeriodicalId\":16329,\"journal\":{\"name\":\"Journal of interventional cardiology\",\"volume\":\"2022 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652076/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of interventional cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2022/5451947\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of interventional cardiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2022/5451947","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Mesenchymal Stem Cell-Derived Extracellular Vesicles Therapy for Pulmonary Hypertension: A Comprehensive Review of Preclinical Studies
Pulmonary hypertension (PH) is a type of clinical pathophysiological syndrome characterized by a progressive increase in pulmonary vascular resistance and subsequent progressive failure of the right heart function, and is a common complication of many diseases. Mesenchymal stem cells (MSCs) autonomously home to sites damaged by disease, repair damaged tissues, and participate in the regulation of systemic inflammation and immune responses, which have good clinical application prospects. Extracellular vesicles (EVs), such as exosomes and microvesicles, participate in various biological activities by regulating intercellular communication. Exosomes secreted into the extracellular environment also affect the host immune system. MSC-derived extracellular vesicles (MSC-EVs), as a mediator in the paracrine processes of MSCs, carry biologically active substances such as proteins, lipids, mRNA, and micro-RNA. MSC-EVs therapies, safer than cell-based treatments, have been shown to be effective in modulating macrophages to support anti-inflammatory phenotypes, which are strongly related to histological and functional benefits in preclinical models of pulmonary hypertension. The main effects of active substances and their potential medical value have attracted wide attention from researchers. This article reviews the role and relevant mechanisms of MSC-EVs in the treatment of pulmonary hypertension in recent studies and provides a basis for their future clinical applications.
期刊介绍:
Journal of Interventional Cardiology is a peer-reviewed, Open Access journal that provides a forum for cardiologists determined to stay current in the diagnosis, investigation, and management of patients with cardiovascular disease and its associated complications. The journal publishes original research articles, review articles, and clinical studies focusing on new procedures and techniques in all major subject areas in the field, including:
Acute coronary syndrome
Coronary disease
Congenital heart diseases
Myocardial infarction
Peripheral arterial disease
Valvular heart disease
Cardiac hemodynamics and physiology
Haemostasis and thrombosis