{"title":"周期环境下具有扩散的多株疟疾模型动力学。","authors":"Yangyang Shi, Hongyong Zhao, Xuebing Zhang","doi":"10.1080/17513758.2022.2144648","DOIUrl":null,"url":null,"abstract":"<p><p>This paper mainly explores the complex impacts of spatial heterogeneity, vector-bias effect, multiple strains, temperature-dependent extrinsic incubation period (EIP) and seasonality on malaria transmission. We propose a multi-strain malaria transmission model with diffusion and periodic delays and define the reproduction numbers <math><msub><mi>R</mi><mrow><mi>i</mi></mrow></msub></math> and <math><msub><mrow><mover><mi>R</mi><mo>^</mo></mover></mrow><mrow><mi>i</mi></mrow></msub></math> (<i>i</i> = 1, 2). Quantitative analysis indicates that the disease-free <i>ω</i>-periodic solution is globally attractive when <math><msub><mi>R</mi><mrow><mi>i</mi></mrow></msub><mo><</mo><mn>1</mn></math>, while if <math><msub><mi>R</mi><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>1</mn><mo>></mo><msub><mi>R</mi><mrow><mi>j</mi></mrow></msub></math> (<math><mi>i</mi><mo>≠</mo><mi>j</mi><mo>,</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math>), then strain <i>i</i> persists and strain <i>j</i> dies out. More interestingly, when <math><msub><mi>R</mi><mrow><mn>1</mn></mrow></msub></math> and <math><msub><mi>R</mi><mrow><mn>2</mn></mrow></msub></math> are greater than 1, the competitive exclusion of the two strains also occurs. Additionally, in a heterogeneous environment, the coexistence conditions of the two strains are <math><msub><mrow><mover><mi>R</mi><mo>^</mo></mover></mrow><mrow><mn>1</mn></mrow></msub><mo>></mo><mn>1</mn></math> and <math><msub><mrow><mover><mi>R</mi><mo>^</mo></mover></mrow><mrow><mn>2</mn></mrow></msub><mo>></mo><mn>1</mn></math>. Numerical simulations verify the analytical results and reveal that ignoring vector-bias effect or seasonality when studying malaria transmission will underestimate the risk of disease transmission.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamics of a multi-strain malaria model with diffusion in a periodic environment.\",\"authors\":\"Yangyang Shi, Hongyong Zhao, Xuebing Zhang\",\"doi\":\"10.1080/17513758.2022.2144648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper mainly explores the complex impacts of spatial heterogeneity, vector-bias effect, multiple strains, temperature-dependent extrinsic incubation period (EIP) and seasonality on malaria transmission. We propose a multi-strain malaria transmission model with diffusion and periodic delays and define the reproduction numbers <math><msub><mi>R</mi><mrow><mi>i</mi></mrow></msub></math> and <math><msub><mrow><mover><mi>R</mi><mo>^</mo></mover></mrow><mrow><mi>i</mi></mrow></msub></math> (<i>i</i> = 1, 2). Quantitative analysis indicates that the disease-free <i>ω</i>-periodic solution is globally attractive when <math><msub><mi>R</mi><mrow><mi>i</mi></mrow></msub><mo><</mo><mn>1</mn></math>, while if <math><msub><mi>R</mi><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>1</mn><mo>></mo><msub><mi>R</mi><mrow><mi>j</mi></mrow></msub></math> (<math><mi>i</mi><mo>≠</mo><mi>j</mi><mo>,</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math>), then strain <i>i</i> persists and strain <i>j</i> dies out. More interestingly, when <math><msub><mi>R</mi><mrow><mn>1</mn></mrow></msub></math> and <math><msub><mi>R</mi><mrow><mn>2</mn></mrow></msub></math> are greater than 1, the competitive exclusion of the two strains also occurs. Additionally, in a heterogeneous environment, the coexistence conditions of the two strains are <math><msub><mrow><mover><mi>R</mi><mo>^</mo></mover></mrow><mrow><mn>1</mn></mrow></msub><mo>></mo><mn>1</mn></math> and <math><msub><mrow><mover><mi>R</mi><mo>^</mo></mover></mrow><mrow><mn>2</mn></mrow></msub><mo>></mo><mn>1</mn></math>. Numerical simulations verify the analytical results and reveal that ignoring vector-bias effect or seasonality when studying malaria transmission will underestimate the risk of disease transmission.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17513758.2022.2144648\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2022.2144648","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
摘要
本文主要探讨空间异质性、媒介偏倚效应、多菌株、温度依赖性外部潜伏期(EIP)和季节性对疟疾传播的复杂影响。我们提出了一个具有扩散和周期延迟的多菌株疟疾传播模型,并定义了繁殖数Ri和R^i (i =1,2)。定量分析表明,当Ri1时无病ω-周期解全局吸引,而当Ri>1>Rj (i≠j,i,j=1,2)时,则菌株i持续存在,菌株j灭绝。更有趣的是,当R1和R2大于1时,两个菌株也会发生竞争排斥。在异质环境下,两菌株的共存条件分别为R^1>1和R^2>1。数值模拟验证了分析结果,揭示了在研究疟疾传播时忽略媒介偏差效应或季节性将低估疾病传播的风险。
Dynamics of a multi-strain malaria model with diffusion in a periodic environment.
This paper mainly explores the complex impacts of spatial heterogeneity, vector-bias effect, multiple strains, temperature-dependent extrinsic incubation period (EIP) and seasonality on malaria transmission. We propose a multi-strain malaria transmission model with diffusion and periodic delays and define the reproduction numbers and (i = 1, 2). Quantitative analysis indicates that the disease-free ω-periodic solution is globally attractive when , while if (), then strain i persists and strain j dies out. More interestingly, when and are greater than 1, the competitive exclusion of the two strains also occurs. Additionally, in a heterogeneous environment, the coexistence conditions of the two strains are and . Numerical simulations verify the analytical results and reveal that ignoring vector-bias effect or seasonality when studying malaria transmission will underestimate the risk of disease transmission.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.