Jiangxue Li, Manman Ning, Yiming Zhang, Qianglin Liu, Kai Liu, Hongjie Zhang, Yuliang Zhao, Chunying Chen, Ying Liu
{"title":"纳米材料毒性影响男性生殖系统的可能性。","authors":"Jiangxue Li, Manman Ning, Yiming Zhang, Qianglin Liu, Kai Liu, Hongjie Zhang, Yuliang Zhao, Chunying Chen, Ying Liu","doi":"10.1002/wnan.1806","DOIUrl":null,"url":null,"abstract":"<p><p>With the development of nanotechnology, nanomaterials offer great advantages in a wide variety of industrial and consumer products, and show promise for biomedical applications. However, with these new products, nanomaterial pollutants may enter the human body to cause adverse health effects, including hazards to the male reproductive system. Nanomaterials can enter the body through inhalation, oral exposure, or intravenous injection, and reach the testis via the blood, penetrate the Sertoli cell barrier, and directly or indirectly elicit toxicopathological changes to the testicles. These may then trigger hormone disorders, inhibit spermatogenic cell proliferation, and induce apoptosis, ultimately leading to a decrease in sperm motility and number, ultimately diminishing male reproductive capacity. This review will discuss the toxicological effects of nanomaterials on the male reproductive system, including inflammation, the impact on the hypothalamic-pituitary-gonadal axis (HPG axis), lipid peroxidation, and free ion release relevant to germ cells, Sertoli cell tight junctions, and the gonadal endocrine system. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":" ","pages":"e1806"},"PeriodicalIF":8.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The potential for nanomaterial toxicity affecting the male reproductive system.\",\"authors\":\"Jiangxue Li, Manman Ning, Yiming Zhang, Qianglin Liu, Kai Liu, Hongjie Zhang, Yuliang Zhao, Chunying Chen, Ying Liu\",\"doi\":\"10.1002/wnan.1806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the development of nanotechnology, nanomaterials offer great advantages in a wide variety of industrial and consumer products, and show promise for biomedical applications. However, with these new products, nanomaterial pollutants may enter the human body to cause adverse health effects, including hazards to the male reproductive system. Nanomaterials can enter the body through inhalation, oral exposure, or intravenous injection, and reach the testis via the blood, penetrate the Sertoli cell barrier, and directly or indirectly elicit toxicopathological changes to the testicles. These may then trigger hormone disorders, inhibit spermatogenic cell proliferation, and induce apoptosis, ultimately leading to a decrease in sperm motility and number, ultimately diminishing male reproductive capacity. This review will discuss the toxicological effects of nanomaterials on the male reproductive system, including inflammation, the impact on the hypothalamic-pituitary-gonadal axis (HPG axis), lipid peroxidation, and free ion release relevant to germ cells, Sertoli cell tight junctions, and the gonadal endocrine system. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.</p>\",\"PeriodicalId\":23697,\"journal\":{\"name\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"volume\":\" \",\"pages\":\"e1806\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/wnan.1806\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wnan.1806","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
The potential for nanomaterial toxicity affecting the male reproductive system.
With the development of nanotechnology, nanomaterials offer great advantages in a wide variety of industrial and consumer products, and show promise for biomedical applications. However, with these new products, nanomaterial pollutants may enter the human body to cause adverse health effects, including hazards to the male reproductive system. Nanomaterials can enter the body through inhalation, oral exposure, or intravenous injection, and reach the testis via the blood, penetrate the Sertoli cell barrier, and directly or indirectly elicit toxicopathological changes to the testicles. These may then trigger hormone disorders, inhibit spermatogenic cell proliferation, and induce apoptosis, ultimately leading to a decrease in sperm motility and number, ultimately diminishing male reproductive capacity. This review will discuss the toxicological effects of nanomaterials on the male reproductive system, including inflammation, the impact on the hypothalamic-pituitary-gonadal axis (HPG axis), lipid peroxidation, and free ion release relevant to germ cells, Sertoli cell tight junctions, and the gonadal endocrine system. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
期刊介绍:
Nanotechnology stands as one of the pivotal scientific domains of the twenty-first century, recognized universally for its transformative potential. Within the biomedical realm, nanotechnology finds crucial applications in nanobiotechnology and nanomedicine, highlighted as one of seven emerging research areas under the NIH Roadmap for Medical Research. The advancement of this field hinges upon collaborative efforts across diverse disciplines, including clinicians, biomedical engineers, materials scientists, applied physicists, and toxicologists.
Recognizing the imperative for a high-caliber interdisciplinary review platform, WIREs Nanomedicine and Nanobiotechnology emerges to fulfill this critical need. Our topical coverage spans a wide spectrum, encompassing areas such as toxicology and regulatory issues, implantable materials and surgical technologies, diagnostic tools, nanotechnology approaches to biology, therapeutic approaches and drug discovery, and biology-inspired nanomaterials. Join us in exploring the frontiers of nanotechnology and its profound impact on biomedical research and healthcare.