Raúl Martín-Santamaría, Sergio Cavero, Alberto Herrán, Abraham Duarte, J Manuel Colmenar
{"title":"可重复实验的实用方法:双排设施布局问题的应用。","authors":"Raúl Martín-Santamaría, Sergio Cavero, Alberto Herrán, Abraham Duarte, J Manuel Colmenar","doi":"10.1162/evco_a_00317","DOIUrl":null,"url":null,"abstract":"<p><p>Reproducibility of experiments is a complex task in stochastic methods such as evolutionary algorithms or metaheuristics in general. Many works from the literature give general guidelines to favor reproducibility. However, none of them provide both a practical set of steps or software tools to help in this process. In this article, we propose a practical methodology to favor reproducibility in optimization problems tackled with stochastic methods. This methodology is divided into three main steps, where the researcher is assisted by software tools which implement state-of-the-art techniques related to this process. The methodology has been applied to study the double-row facility layout problem (DRFLP) where we propose a new algorithm able to obtain better results than the state-of-the-art methods. To this aim, we have also replicated the previous methods in order to complete the study with a new set of larger instances. All the produced artifacts related to the methodology and the study of the target problem are available in Zenodo.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Practical Methodology for Reproducible Experimentation: An Application to the Double-Row Facility Layout Problem.\",\"authors\":\"Raúl Martín-Santamaría, Sergio Cavero, Alberto Herrán, Abraham Duarte, J Manuel Colmenar\",\"doi\":\"10.1162/evco_a_00317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reproducibility of experiments is a complex task in stochastic methods such as evolutionary algorithms or metaheuristics in general. Many works from the literature give general guidelines to favor reproducibility. However, none of them provide both a practical set of steps or software tools to help in this process. In this article, we propose a practical methodology to favor reproducibility in optimization problems tackled with stochastic methods. This methodology is divided into three main steps, where the researcher is assisted by software tools which implement state-of-the-art techniques related to this process. The methodology has been applied to study the double-row facility layout problem (DRFLP) where we propose a new algorithm able to obtain better results than the state-of-the-art methods. To this aim, we have also replicated the previous methods in order to complete the study with a new set of larger instances. All the produced artifacts related to the methodology and the study of the target problem are available in Zenodo.</p>\",\"PeriodicalId\":50470,\"journal\":{\"name\":\"Evolutionary Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/evco_a_00317\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco_a_00317","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Practical Methodology for Reproducible Experimentation: An Application to the Double-Row Facility Layout Problem.
Reproducibility of experiments is a complex task in stochastic methods such as evolutionary algorithms or metaheuristics in general. Many works from the literature give general guidelines to favor reproducibility. However, none of them provide both a practical set of steps or software tools to help in this process. In this article, we propose a practical methodology to favor reproducibility in optimization problems tackled with stochastic methods. This methodology is divided into three main steps, where the researcher is assisted by software tools which implement state-of-the-art techniques related to this process. The methodology has been applied to study the double-row facility layout problem (DRFLP) where we propose a new algorithm able to obtain better results than the state-of-the-art methods. To this aim, we have also replicated the previous methods in order to complete the study with a new set of larger instances. All the produced artifacts related to the methodology and the study of the target problem are available in Zenodo.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.