Michael T Riles, Dale Martin, Cindy Mulla, Eddie Summers, Lee Duke, James Clauson, Lindsay P Campbell, Bryan V Giordano
{"title":"2014 - 2020年佛罗里达州巴拿马城海滩哨兵鸡和蚊子西尼罗病毒监测","authors":"Michael T Riles, Dale Martin, Cindy Mulla, Eddie Summers, Lee Duke, James Clauson, Lindsay P Campbell, Bryan V Giordano","doi":"10.2987/22-7074","DOIUrl":null,"url":null,"abstract":"<p><p>Over 20 years since its introduction, the West Nile virus (WNV) continues to be the leading cause of arboviral disease in the USA. In Panama City Beach (Bay County, FL), WNV transmission is monitored using sentinel chickens and testing mosquito pools for presence of viral RNA. In the current work, we monitored WNV transmission from 2014 to 2020 through weekly serology sampling of sentinel chickens; mosquito populations through biweekly mosquito collections by suction traps (1 m and 9 m) and weekly gravid trap collections; and mosquito infection rates using a reverse transcriptase-polymerase chain reaction (RT-PCR) assay. Samples were sent to the Bureau of Public Health Laboratories (Tampa, FL) for testing presence/absence of WNV via RT-PCR assay. Our results indicated that canopy surveillance could augment ground collections, providing greater proportions of Culex mosquitoes with less bycatch compared with ground collections. Serology indicated 94 seroconversions to WNV in the study area from 2014 to 2020. The most active year was 2016, which accounted for 32% (n = 30) of all seroconversions reported during the study period. We detected 20 WNV-positive mosquito pools from Culex quinquefasciatus during 2014-17; mosquito infection rates ranged from 2.02 to 23.81 per thousand (95% CI). Climate data indicated anomalously high precipitation in 2014-19 preceding WNV transmission. Data analyzed herein indicate utility in year-round continuous and diversified surveillance methodologies. This information is needed to properly calibrate future models that could assist with predicting transmission events of WNV in Panama City Beach, FL.</p>","PeriodicalId":17192,"journal":{"name":"Journal of the American Mosquito Control Association","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"West Nile Virus Surveillance in Sentinel Chickens and Mosquitoes in Panama City Beach, Florida, from 2014 To 2020.\",\"authors\":\"Michael T Riles, Dale Martin, Cindy Mulla, Eddie Summers, Lee Duke, James Clauson, Lindsay P Campbell, Bryan V Giordano\",\"doi\":\"10.2987/22-7074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over 20 years since its introduction, the West Nile virus (WNV) continues to be the leading cause of arboviral disease in the USA. In Panama City Beach (Bay County, FL), WNV transmission is monitored using sentinel chickens and testing mosquito pools for presence of viral RNA. In the current work, we monitored WNV transmission from 2014 to 2020 through weekly serology sampling of sentinel chickens; mosquito populations through biweekly mosquito collections by suction traps (1 m and 9 m) and weekly gravid trap collections; and mosquito infection rates using a reverse transcriptase-polymerase chain reaction (RT-PCR) assay. Samples were sent to the Bureau of Public Health Laboratories (Tampa, FL) for testing presence/absence of WNV via RT-PCR assay. Our results indicated that canopy surveillance could augment ground collections, providing greater proportions of Culex mosquitoes with less bycatch compared with ground collections. Serology indicated 94 seroconversions to WNV in the study area from 2014 to 2020. The most active year was 2016, which accounted for 32% (n = 30) of all seroconversions reported during the study period. We detected 20 WNV-positive mosquito pools from Culex quinquefasciatus during 2014-17; mosquito infection rates ranged from 2.02 to 23.81 per thousand (95% CI). Climate data indicated anomalously high precipitation in 2014-19 preceding WNV transmission. Data analyzed herein indicate utility in year-round continuous and diversified surveillance methodologies. This information is needed to properly calibrate future models that could assist with predicting transmission events of WNV in Panama City Beach, FL.</p>\",\"PeriodicalId\":17192,\"journal\":{\"name\":\"Journal of the American Mosquito Control Association\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mosquito Control Association\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.2987/22-7074\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mosquito Control Association","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2987/22-7074","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
West Nile Virus Surveillance in Sentinel Chickens and Mosquitoes in Panama City Beach, Florida, from 2014 To 2020.
Over 20 years since its introduction, the West Nile virus (WNV) continues to be the leading cause of arboviral disease in the USA. In Panama City Beach (Bay County, FL), WNV transmission is monitored using sentinel chickens and testing mosquito pools for presence of viral RNA. In the current work, we monitored WNV transmission from 2014 to 2020 through weekly serology sampling of sentinel chickens; mosquito populations through biweekly mosquito collections by suction traps (1 m and 9 m) and weekly gravid trap collections; and mosquito infection rates using a reverse transcriptase-polymerase chain reaction (RT-PCR) assay. Samples were sent to the Bureau of Public Health Laboratories (Tampa, FL) for testing presence/absence of WNV via RT-PCR assay. Our results indicated that canopy surveillance could augment ground collections, providing greater proportions of Culex mosquitoes with less bycatch compared with ground collections. Serology indicated 94 seroconversions to WNV in the study area from 2014 to 2020. The most active year was 2016, which accounted for 32% (n = 30) of all seroconversions reported during the study period. We detected 20 WNV-positive mosquito pools from Culex quinquefasciatus during 2014-17; mosquito infection rates ranged from 2.02 to 23.81 per thousand (95% CI). Climate data indicated anomalously high precipitation in 2014-19 preceding WNV transmission. Data analyzed herein indicate utility in year-round continuous and diversified surveillance methodologies. This information is needed to properly calibrate future models that could assist with predicting transmission events of WNV in Panama City Beach, FL.
期刊介绍:
The Journal of the American Mosquito Control Association (JAMCA) encourages the submission
of previously unpublished manuscripts contributing to the advancement of knowledge of
mosquitoes and other arthropod vectors. The Journal encourages submission of a wide range of
scientific studies that include all aspects of biology, ecology, systematics, and integrated pest
management. Manuscripts exceeding normal length (e. g., monographs) may be accepted for
publication as a supplement to the regular issue.