{"title":"乳腺癌干细胞的生长动力学:自我反馈和EMT机制的影响。","authors":"Liuyong Pang, Sanhong Liu, Zhong Zhao, Tianhai Tian, Xinan Zhang, Qiuying Li","doi":"10.1007/s12064-022-00374-w","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer stem cells (BCSCs) with the ability to self-renew and differentiate have been identified in primary breast cancer tissues and cell lines. The BCSCs are often resistant to traditional radiation and/or chemotherapies. Previous studies have also shown that successful therapy must eradicate cancer stem cells. The purpose of this paper is to develop a mathematical model with self-feedback mechanism to illustrate the issues regarding the difficulties of absolutely eliminating a breast cancer. In addition, we introduce the mechanism of the epithelial-mesenchymal transition (EMT) to investigate the influence of EMT on the effects of breast cancer growth and treatment. Results indicate that the EMT mechanism facilitates the growth of breast cancer and makes breast cancer more difficult to be cured. Therefore, targeting the signals involved in EMT can halt tumor progression in breast cancer. Finally, we apply the experimental data to carry out numerical simulations and validate our theoretical conclusions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"297-311"},"PeriodicalIF":16.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Growth dynamics of breast cancer stem cells: effects of self-feedback and EMT mechanisms.\",\"authors\":\"Liuyong Pang, Sanhong Liu, Zhong Zhao, Tianhai Tian, Xinan Zhang, Qiuying Li\",\"doi\":\"10.1007/s12064-022-00374-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer stem cells (BCSCs) with the ability to self-renew and differentiate have been identified in primary breast cancer tissues and cell lines. The BCSCs are often resistant to traditional radiation and/or chemotherapies. Previous studies have also shown that successful therapy must eradicate cancer stem cells. The purpose of this paper is to develop a mathematical model with self-feedback mechanism to illustrate the issues regarding the difficulties of absolutely eliminating a breast cancer. In addition, we introduce the mechanism of the epithelial-mesenchymal transition (EMT) to investigate the influence of EMT on the effects of breast cancer growth and treatment. Results indicate that the EMT mechanism facilitates the growth of breast cancer and makes breast cancer more difficult to be cured. Therefore, targeting the signals involved in EMT can halt tumor progression in breast cancer. Finally, we apply the experimental data to carry out numerical simulations and validate our theoretical conclusions.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\" \",\"pages\":\"297-311\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12064-022-00374-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12064-022-00374-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Growth dynamics of breast cancer stem cells: effects of self-feedback and EMT mechanisms.
Breast cancer stem cells (BCSCs) with the ability to self-renew and differentiate have been identified in primary breast cancer tissues and cell lines. The BCSCs are often resistant to traditional radiation and/or chemotherapies. Previous studies have also shown that successful therapy must eradicate cancer stem cells. The purpose of this paper is to develop a mathematical model with self-feedback mechanism to illustrate the issues regarding the difficulties of absolutely eliminating a breast cancer. In addition, we introduce the mechanism of the epithelial-mesenchymal transition (EMT) to investigate the influence of EMT on the effects of breast cancer growth and treatment. Results indicate that the EMT mechanism facilitates the growth of breast cancer and makes breast cancer more difficult to be cured. Therefore, targeting the signals involved in EMT can halt tumor progression in breast cancer. Finally, we apply the experimental data to carry out numerical simulations and validate our theoretical conclusions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.