{"title":"生存和竞争风险分析中因果推断的目标最大似然估计。","authors":"Helene C W Rytgaard, Mark J van der Laan","doi":"10.1007/s10985-022-09576-2","DOIUrl":null,"url":null,"abstract":"<p><p>Targeted maximum likelihood estimation (TMLE) provides a general methodology for estimation of causal parameters in presence of high-dimensional nuisance parameters. Generally, TMLE consists of a two-step procedure that combines data-adaptive nuisance parameter estimation with semiparametric efficiency and rigorous statistical inference obtained via a targeted update step. In this paper, we demonstrate the practical applicability of TMLE based causal inference in survival and competing risks settings where event times are not confined to take place on a discrete and finite grid. We focus on estimation of causal effects of time-fixed treatment decisions on survival and absolute risk probabilities, considering different univariate and multidimensional parameters. Besides providing a general guidance to using TMLE for survival and competing risks analysis, we further describe how the previous work can be extended with the use of loss-based cross-validated estimation, also known as super learning, of the conditional hazards. We illustrate the usage of the considered methods using publicly available data from a trial on adjuvant chemotherapy for colon cancer. R software code to implement all considered algorithms and to reproduce all analyses is available in an accompanying online appendix on Github.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Targeted maximum likelihood estimation for causal inference in survival and competing risks analysis.\",\"authors\":\"Helene C W Rytgaard, Mark J van der Laan\",\"doi\":\"10.1007/s10985-022-09576-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Targeted maximum likelihood estimation (TMLE) provides a general methodology for estimation of causal parameters in presence of high-dimensional nuisance parameters. Generally, TMLE consists of a two-step procedure that combines data-adaptive nuisance parameter estimation with semiparametric efficiency and rigorous statistical inference obtained via a targeted update step. In this paper, we demonstrate the practical applicability of TMLE based causal inference in survival and competing risks settings where event times are not confined to take place on a discrete and finite grid. We focus on estimation of causal effects of time-fixed treatment decisions on survival and absolute risk probabilities, considering different univariate and multidimensional parameters. Besides providing a general guidance to using TMLE for survival and competing risks analysis, we further describe how the previous work can be extended with the use of loss-based cross-validated estimation, also known as super learning, of the conditional hazards. We illustrate the usage of the considered methods using publicly available data from a trial on adjuvant chemotherapy for colon cancer. R software code to implement all considered algorithms and to reproduce all analyses is available in an accompanying online appendix on Github.</p>\",\"PeriodicalId\":49908,\"journal\":{\"name\":\"Lifetime Data Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lifetime Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-022-09576-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/11/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-022-09576-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
摘要
目标最大似然估计法(TMLE)为在存在高维滋扰参数的情况下估计因果参数提供了一种通用方法。一般来说,TMLE 由两步程序组成,将数据适应性滋扰参数估计与半参数效率和通过有针对性的更新步骤获得的严格统计推断相结合。在本文中,我们展示了基于 TMLE 的因果推断在生存和竞争风险环境中的实际应用性,在这些环境中,事件发生时间并不局限于离散和有限的网格上。考虑到不同的单变量和多维参数,我们重点研究了时间固定的治疗决策对生存和绝对风险概率的因果效应估计。除了为使用 TMLE 进行生存和竞争风险分析提供一般指导外,我们还进一步介绍了如何利用基于损失的交叉验证估计(也称为超级学习)来扩展之前的工作。我们使用结肠癌辅助化疗试验的公开数据来说明所考虑的方法的用法。Github 上随附的在线附录中提供了 R 软件代码,用于实现所有考虑的算法和重现所有分析。
Targeted maximum likelihood estimation for causal inference in survival and competing risks analysis.
Targeted maximum likelihood estimation (TMLE) provides a general methodology for estimation of causal parameters in presence of high-dimensional nuisance parameters. Generally, TMLE consists of a two-step procedure that combines data-adaptive nuisance parameter estimation with semiparametric efficiency and rigorous statistical inference obtained via a targeted update step. In this paper, we demonstrate the practical applicability of TMLE based causal inference in survival and competing risks settings where event times are not confined to take place on a discrete and finite grid. We focus on estimation of causal effects of time-fixed treatment decisions on survival and absolute risk probabilities, considering different univariate and multidimensional parameters. Besides providing a general guidance to using TMLE for survival and competing risks analysis, we further describe how the previous work can be extended with the use of loss-based cross-validated estimation, also known as super learning, of the conditional hazards. We illustrate the usage of the considered methods using publicly available data from a trial on adjuvant chemotherapy for colon cancer. R software code to implement all considered algorithms and to reproduce all analyses is available in an accompanying online appendix on Github.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.