{"title":"两种鱼视蛋白逆转录基因LWS-R及其宿主基因的相关表达。","authors":"Chia-Hao Chang","doi":"10.6620/ZS.2022.61-16","DOIUrl":null,"url":null,"abstract":"<p><p>The important role of retrogenes in genome evolution and species differentiation is becoming increasingly accepted. One synapomorphy among cyprinodontoid fish is a retrotransposed version of a long-wavelength sensitive (LWS) opsin gene, LWS-R, within an intron of the gephyrin (GPHN) gene. These two genes display opposing orientations. It had been speculated that LWS-R hijacks the cis-regulatory elements of GPHN for transcription, but whether their expression is correlated had remained unclear. Here, <i>in silico</i> predictions identified putative promoters upstream of the translation start site of LWS-R, indicating that its transcription is driven by its own promoter rather than by the GPHN promoter. However, consistent expression ratios of LWS-R:GPHN in the eyeball and brain of fishes indicate that the respective gene transcriptions are correlated. Co-expression is potentially modulated by histone exchange during GPHN transcription. Two isoforms were detected in this study, <i>i.e.</i>, intron-free and intron-retaining. Intron-free LWS-R was only expressed in the eyeball of fishes, whereas intron-retaining LWS-R occurred in both eyeball and brain. Expression of vision-associated LWS-R beyond the eyeball supports that it is co-expressed with more ubiquitous GPHN.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579955/pdf/zoolstud-61-016.pdf","citationCount":"1","resultStr":"{\"title\":\"Correlated Expression of the Opsin Retrogene LWS-R and its Host Gene in Two Poeciliid Fishes.\",\"authors\":\"Chia-Hao Chang\",\"doi\":\"10.6620/ZS.2022.61-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The important role of retrogenes in genome evolution and species differentiation is becoming increasingly accepted. One synapomorphy among cyprinodontoid fish is a retrotransposed version of a long-wavelength sensitive (LWS) opsin gene, LWS-R, within an intron of the gephyrin (GPHN) gene. These two genes display opposing orientations. It had been speculated that LWS-R hijacks the cis-regulatory elements of GPHN for transcription, but whether their expression is correlated had remained unclear. Here, <i>in silico</i> predictions identified putative promoters upstream of the translation start site of LWS-R, indicating that its transcription is driven by its own promoter rather than by the GPHN promoter. However, consistent expression ratios of LWS-R:GPHN in the eyeball and brain of fishes indicate that the respective gene transcriptions are correlated. Co-expression is potentially modulated by histone exchange during GPHN transcription. Two isoforms were detected in this study, <i>i.e.</i>, intron-free and intron-retaining. Intron-free LWS-R was only expressed in the eyeball of fishes, whereas intron-retaining LWS-R occurred in both eyeball and brain. Expression of vision-associated LWS-R beyond the eyeball supports that it is co-expressed with more ubiquitous GPHN.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579955/pdf/zoolstud-61-016.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.6620/ZS.2022.61-16\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.6620/ZS.2022.61-16","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Correlated Expression of the Opsin Retrogene LWS-R and its Host Gene in Two Poeciliid Fishes.
The important role of retrogenes in genome evolution and species differentiation is becoming increasingly accepted. One synapomorphy among cyprinodontoid fish is a retrotransposed version of a long-wavelength sensitive (LWS) opsin gene, LWS-R, within an intron of the gephyrin (GPHN) gene. These two genes display opposing orientations. It had been speculated that LWS-R hijacks the cis-regulatory elements of GPHN for transcription, but whether their expression is correlated had remained unclear. Here, in silico predictions identified putative promoters upstream of the translation start site of LWS-R, indicating that its transcription is driven by its own promoter rather than by the GPHN promoter. However, consistent expression ratios of LWS-R:GPHN in the eyeball and brain of fishes indicate that the respective gene transcriptions are correlated. Co-expression is potentially modulated by histone exchange during GPHN transcription. Two isoforms were detected in this study, i.e., intron-free and intron-retaining. Intron-free LWS-R was only expressed in the eyeball of fishes, whereas intron-retaining LWS-R occurred in both eyeball and brain. Expression of vision-associated LWS-R beyond the eyeball supports that it is co-expressed with more ubiquitous GPHN.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.