{"title":"颅内动脉血管壁成像:基础和临床应用。","authors":"Miho Gomyo, Kazuhiro Tsuchiya, Kenichi Yokoyama","doi":"10.2463/mrms.rev.2021-0140","DOIUrl":null,"url":null,"abstract":"<p><p>With the increasing use of 3-tesla MRI scanners and the development of applicable sequences, it has become possible to achieve high-resolution, good contrast imaging, which has enabled the imaging of the walls of small-diameter intracranial arteries. In recent years, the usefulness of vessel wall imaging has been reported for numerous intracranial arterial diseases, such as for the detection of vulnerable plaque in atherosclerosis, diagnosis of cerebral arterial dissection, prediction of the rupture of cerebral aneurysms, and status of moyamoya disease and cerebral vasculitis. In this review, we introduce the histological characteristics of the intracranial artery, discuss intracranial vessel wall imaging methods, and review the findings of vessel wall imaging for various major intracranial arterial diseases.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"447-458"},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b7/37/mrms-22-447.PMC10552670.pdf","citationCount":"1","resultStr":"{\"title\":\"Vessel Wall Imaging of Intracranial Arteries: Fundamentals and Clinical Applications.\",\"authors\":\"Miho Gomyo, Kazuhiro Tsuchiya, Kenichi Yokoyama\",\"doi\":\"10.2463/mrms.rev.2021-0140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the increasing use of 3-tesla MRI scanners and the development of applicable sequences, it has become possible to achieve high-resolution, good contrast imaging, which has enabled the imaging of the walls of small-diameter intracranial arteries. In recent years, the usefulness of vessel wall imaging has been reported for numerous intracranial arterial diseases, such as for the detection of vulnerable plaque in atherosclerosis, diagnosis of cerebral arterial dissection, prediction of the rupture of cerebral aneurysms, and status of moyamoya disease and cerebral vasculitis. In this review, we introduce the histological characteristics of the intracranial artery, discuss intracranial vessel wall imaging methods, and review the findings of vessel wall imaging for various major intracranial arterial diseases.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"447-458\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b7/37/mrms-22-447.PMC10552670.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2463/mrms.rev.2021-0140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/11/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2463/mrms.rev.2021-0140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Vessel Wall Imaging of Intracranial Arteries: Fundamentals and Clinical Applications.
With the increasing use of 3-tesla MRI scanners and the development of applicable sequences, it has become possible to achieve high-resolution, good contrast imaging, which has enabled the imaging of the walls of small-diameter intracranial arteries. In recent years, the usefulness of vessel wall imaging has been reported for numerous intracranial arterial diseases, such as for the detection of vulnerable plaque in atherosclerosis, diagnosis of cerebral arterial dissection, prediction of the rupture of cerebral aneurysms, and status of moyamoya disease and cerebral vasculitis. In this review, we introduce the histological characteristics of the intracranial artery, discuss intracranial vessel wall imaging methods, and review the findings of vessel wall imaging for various major intracranial arterial diseases.