小鼠原核组蛋白修饰及其对胚胎发育的影响。

Q4 Biochemistry, Genetics and Molecular Biology
Ewa Borsuk, Julia Michalkiewicz, Jacek Z Kubiak, Malgorzata Kloc
{"title":"小鼠原核组蛋白修饰及其对胚胎发育的影响。","authors":"Ewa Borsuk,&nbsp;Julia Michalkiewicz,&nbsp;Jacek Z Kubiak,&nbsp;Malgorzata Kloc","doi":"10.1007/978-3-031-06573-6_14","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetic marks, such as DNA methylation and posttranslational modifications of core histones, are the key regulators of gene expression. In the mouse, many of these marks are erased during gamete formation and must be introduced de novo after fertilization. Some of them appear synchronously, but the others are deposited asynchronously and/or remain differently distributed on maternal and paternal chromatin. Although the mechanisms regulating these processes are not entirely understandable, it is commonly accepted that epigenetic reprogramming occurring during the first cell cycle of a mouse embryo is crucial for its further development. This chapter focuses on selected epigenetic modifications, such as DNA methylation, the introduction of histone variants, histones acetylation, phosphorylation, and methylation. Properly depositing these marks on maternal and paternal chromatin is crucial for normal embryonic development.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Histone Modifications in Mouse Pronuclei and Consequences for Embryo Development.\",\"authors\":\"Ewa Borsuk,&nbsp;Julia Michalkiewicz,&nbsp;Jacek Z Kubiak,&nbsp;Malgorzata Kloc\",\"doi\":\"10.1007/978-3-031-06573-6_14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epigenetic marks, such as DNA methylation and posttranslational modifications of core histones, are the key regulators of gene expression. In the mouse, many of these marks are erased during gamete formation and must be introduced de novo after fertilization. Some of them appear synchronously, but the others are deposited asynchronously and/or remain differently distributed on maternal and paternal chromatin. Although the mechanisms regulating these processes are not entirely understandable, it is commonly accepted that epigenetic reprogramming occurring during the first cell cycle of a mouse embryo is crucial for its further development. This chapter focuses on selected epigenetic modifications, such as DNA methylation, the introduction of histone variants, histones acetylation, phosphorylation, and methylation. Properly depositing these marks on maternal and paternal chromatin is crucial for normal embryonic development.</p>\",\"PeriodicalId\":39320,\"journal\":{\"name\":\"Results and Problems in Cell Differentiation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results and Problems in Cell Differentiation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-06573-6_14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results and Problems in Cell Differentiation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-06573-6_14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

表观遗传标记,如DNA甲基化和核心组蛋白的翻译后修饰,是基因表达的关键调控因子。在小鼠中,许多这些标记在配子形成过程中被抹去,必须在受精后重新引入。其中一些是同步出现的,但其他的是不同步沉积和/或在母体和父亲的染色质上保持不同的分布。尽管调控这些过程的机制尚不完全清楚,但人们普遍认为,发生在小鼠胚胎第一个细胞周期中的表观遗传重编程对其进一步发育至关重要。本章着重于选择的表观遗传修饰,如DNA甲基化,组蛋白变体的引入,组蛋白乙酰化,磷酸化和甲基化。这些标记正确地沉积在母体和父亲的染色质上对正常的胚胎发育至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Histone Modifications in Mouse Pronuclei and Consequences for Embryo Development.

Epigenetic marks, such as DNA methylation and posttranslational modifications of core histones, are the key regulators of gene expression. In the mouse, many of these marks are erased during gamete formation and must be introduced de novo after fertilization. Some of them appear synchronously, but the others are deposited asynchronously and/or remain differently distributed on maternal and paternal chromatin. Although the mechanisms regulating these processes are not entirely understandable, it is commonly accepted that epigenetic reprogramming occurring during the first cell cycle of a mouse embryo is crucial for its further development. This chapter focuses on selected epigenetic modifications, such as DNA methylation, the introduction of histone variants, histones acetylation, phosphorylation, and methylation. Properly depositing these marks on maternal and paternal chromatin is crucial for normal embryonic development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results and Problems in Cell Differentiation
Results and Problems in Cell Differentiation Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
1.90
自引率
0.00%
发文量
21
期刊介绍: Results and Problems in Cell Differentiation is an up-to-date book series that presents and explores selected questions of cell and developmental biology. Each volume focuses on a single, well-defined topic. Reviews address basic questions and phenomena, but also provide concise information on the most recent advances. Together, the volumes provide a valuable overview of this exciting and dynamically expanding field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信