染色质作为聚合物的标度关系。

Q4 Biochemistry, Genetics and Molecular Biology
Takahiro Sakaue, Akatsuki Kimura
{"title":"染色质作为聚合物的标度关系。","authors":"Takahiro Sakaue,&nbsp;Akatsuki Kimura","doi":"10.1007/978-3-031-06573-6_8","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic DNA, which controls genetic information, is stored in the cell nucleus in eukaryotes. Chromatin moves dynamically in the nucleus, and this movement is closely related to the function of chromatin. However, the driving force of chromatin movement, its control mechanism, and the functional significance of movement are unclear. In addition to biochemical and genetic approaches such as identification and analysis of regulators, approaches based on the physical properties of chromatin and cell nuclei are indispensable for this understanding. In particular, the idea of polymer physics is expected to be effective. This paper introduces our efforts to combine biological experiments on chromatin kinetics with theoretical analysis based on polymer physics.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling Relationship in Chromatin as a Polymer.\",\"authors\":\"Takahiro Sakaue,&nbsp;Akatsuki Kimura\",\"doi\":\"10.1007/978-3-031-06573-6_8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genomic DNA, which controls genetic information, is stored in the cell nucleus in eukaryotes. Chromatin moves dynamically in the nucleus, and this movement is closely related to the function of chromatin. However, the driving force of chromatin movement, its control mechanism, and the functional significance of movement are unclear. In addition to biochemical and genetic approaches such as identification and analysis of regulators, approaches based on the physical properties of chromatin and cell nuclei are indispensable for this understanding. In particular, the idea of polymer physics is expected to be effective. This paper introduces our efforts to combine biological experiments on chromatin kinetics with theoretical analysis based on polymer physics.</p>\",\"PeriodicalId\":39320,\"journal\":{\"name\":\"Results and Problems in Cell Differentiation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results and Problems in Cell Differentiation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-06573-6_8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results and Problems in Cell Differentiation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-06573-6_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

控制遗传信息的基因组DNA储存在真核生物的细胞核中。染色质在细胞核内动态运动,这种运动与染色质的功能密切相关。然而,染色质运动的驱动力、控制机制以及运动的功能意义尚不清楚。除了生物化学和遗传方法,如鉴定和分析调节因子,基于染色质和细胞核物理性质的方法对于这种理解是必不可少的。特别是,聚合物物理的思想被期望是有效的。本文介绍了我们将染色质动力学的生物学实验与基于高分子物理的理论分析相结合的努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaling Relationship in Chromatin as a Polymer.

Genomic DNA, which controls genetic information, is stored in the cell nucleus in eukaryotes. Chromatin moves dynamically in the nucleus, and this movement is closely related to the function of chromatin. However, the driving force of chromatin movement, its control mechanism, and the functional significance of movement are unclear. In addition to biochemical and genetic approaches such as identification and analysis of regulators, approaches based on the physical properties of chromatin and cell nuclei are indispensable for this understanding. In particular, the idea of polymer physics is expected to be effective. This paper introduces our efforts to combine biological experiments on chromatin kinetics with theoretical analysis based on polymer physics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results and Problems in Cell Differentiation
Results and Problems in Cell Differentiation Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
1.90
自引率
0.00%
发文量
21
期刊介绍: Results and Problems in Cell Differentiation is an up-to-date book series that presents and explores selected questions of cell and developmental biology. Each volume focuses on a single, well-defined topic. Reviews address basic questions and phenomena, but also provide concise information on the most recent advances. Together, the volumes provide a valuable overview of this exciting and dynamically expanding field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信