{"title":"单峰骆驼内耳的形态学和形态计量学及其对听力和平衡效率的影响。","authors":"Safwat Ali, Abdelraheem Esmat, Atef Erasha, Masahiro Yasuda, Mohamed Alsafy","doi":"10.1186/s40851-022-00196-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The inner ear morphology and size are linked to hearing and balance ability. The goal of this study was to determine the morphology and morphometrics of the dromedary camel's inner ear and how it influences hearing accommodation and equilibrium in the desert environment.</p><p><strong>Materials and methods: </strong>Gross morphology, computed tomography images, and the endocast were used to show the inner ear morphology. A caliper and ImageJ software were used to take measurements on a plastic endocast.</p><p><strong>Results: </strong>The presence of the subarcuate fossa, flat cochlea, radii curvature of the semicircular canals, particularly the lateral semicircular canal, orthogonality, and the union between the semicircular canals, along with slightly increased saccule and utricle size, maintains camel balance on sandy ground, even during heavy sandstorms. The cochlear basilar membrane length and cochlea radii ratio aided low-frequency hearing and perception over a wide octave range.</p><p><strong>Conclusion: </strong>The camel's cochlear characteristics revealed a lengthy basilar membrane, a high radii ratio, 3.0 cochlear canal turns, and a very broad cochlea. The orthogonality of the semicircular canals, the high curvature of the lateral semicircular canal, the presence of the subarcuate fossa, and the confluence between the lateral and posterior semicircular canal were particular specifications that allowed the inner ear of the camel to adapt to desert living.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9615196/pdf/","citationCount":"1","resultStr":"{\"title\":\"Morphology and morphometry of the inner ear of the dromedary camel and their influence on the efficiency of hearing and equilibrium.\",\"authors\":\"Safwat Ali, Abdelraheem Esmat, Atef Erasha, Masahiro Yasuda, Mohamed Alsafy\",\"doi\":\"10.1186/s40851-022-00196-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The inner ear morphology and size are linked to hearing and balance ability. The goal of this study was to determine the morphology and morphometrics of the dromedary camel's inner ear and how it influences hearing accommodation and equilibrium in the desert environment.</p><p><strong>Materials and methods: </strong>Gross morphology, computed tomography images, and the endocast were used to show the inner ear morphology. A caliper and ImageJ software were used to take measurements on a plastic endocast.</p><p><strong>Results: </strong>The presence of the subarcuate fossa, flat cochlea, radii curvature of the semicircular canals, particularly the lateral semicircular canal, orthogonality, and the union between the semicircular canals, along with slightly increased saccule and utricle size, maintains camel balance on sandy ground, even during heavy sandstorms. The cochlear basilar membrane length and cochlea radii ratio aided low-frequency hearing and perception over a wide octave range.</p><p><strong>Conclusion: </strong>The camel's cochlear characteristics revealed a lengthy basilar membrane, a high radii ratio, 3.0 cochlear canal turns, and a very broad cochlea. The orthogonality of the semicircular canals, the high curvature of the lateral semicircular canal, the presence of the subarcuate fossa, and the confluence between the lateral and posterior semicircular canal were particular specifications that allowed the inner ear of the camel to adapt to desert living.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9615196/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40851-022-00196-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40851-022-00196-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Morphology and morphometry of the inner ear of the dromedary camel and their influence on the efficiency of hearing and equilibrium.
Background: The inner ear morphology and size are linked to hearing and balance ability. The goal of this study was to determine the morphology and morphometrics of the dromedary camel's inner ear and how it influences hearing accommodation and equilibrium in the desert environment.
Materials and methods: Gross morphology, computed tomography images, and the endocast were used to show the inner ear morphology. A caliper and ImageJ software were used to take measurements on a plastic endocast.
Results: The presence of the subarcuate fossa, flat cochlea, radii curvature of the semicircular canals, particularly the lateral semicircular canal, orthogonality, and the union between the semicircular canals, along with slightly increased saccule and utricle size, maintains camel balance on sandy ground, even during heavy sandstorms. The cochlear basilar membrane length and cochlea radii ratio aided low-frequency hearing and perception over a wide octave range.
Conclusion: The camel's cochlear characteristics revealed a lengthy basilar membrane, a high radii ratio, 3.0 cochlear canal turns, and a very broad cochlea. The orthogonality of the semicircular canals, the high curvature of the lateral semicircular canal, the presence of the subarcuate fossa, and the confluence between the lateral and posterior semicircular canal were particular specifications that allowed the inner ear of the camel to adapt to desert living.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.