{"title":"三源鞍形曲线锥束光子计数 CT 图像重建:模拟研究","authors":"","doi":"10.1016/j.zemedi.2022.10.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>The most common detector material in the PC CT system, cannot achieve the best performance at a relatively higher photon flux rate. In the reconstruction view, the most commonly used filtered back projection, is not able to provide sufficient reconstructed image quality in spectral computed tomography (CT). Developing a triple-source saddle-curve cone-beam photon counting CT image reconstruction method can improve the temporal resolution.</p></div><div><h3>Methods</h3><p>Triple-source saddle-curve cone-beam trajectory was rearranged into four trajectory sets for simulation and reconstruction. Projection images in different energy bins were simulated by forward projection and photon counting CT respond model simulation. After simulation, the object was reconstructed using Katsevich’s theory after photon counts correction using the pseudo inverse of photon counting CT response matrix. The material decomposition can be performed based on images in different energy bins.</p></div><div><h3>Results</h3><p>Root mean square error (RMSE) and structural similarity index (SSIM) are calculated to quantify the image quality of reconstruction images. Compared with FDK images, the RMSE for the triple-source image was improved by 27%, 21%, 14%, 8%, and 6% for the reconstrued image of 20–33, 33–47, 47–58, 58–69, 69–80 keV energy bin. The SSIM was improved by 1.031%, 0.665%, 0.396%, 0.235%, 0.174% for corresponding energy bin. The decomposition image based on corrected images shows improved RMSE and SSIM, each by 33.861% and 0.345%. SSIM of corrected decomposition image of iodine reaches 99.415% of the original image.</p></div><div><h3>Conclusions</h3><p>A new Triple-source saddle-curve cone-beam PC CT image reconstruction method was developed in this work. The exact reconstruction of the triple-source saddle-curve improved both the image quality and temporal resolution.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388922000976/pdfft?md5=cbc77a0b4c1832ccbc8b5cf2a1e8cbb2&pid=1-s2.0-S0939388922000976-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Triple-source saddle-curve cone-beam photon counting CT image reconstruction: A simulation study\",\"authors\":\"\",\"doi\":\"10.1016/j.zemedi.2022.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>The most common detector material in the PC CT system, cannot achieve the best performance at a relatively higher photon flux rate. In the reconstruction view, the most commonly used filtered back projection, is not able to provide sufficient reconstructed image quality in spectral computed tomography (CT). Developing a triple-source saddle-curve cone-beam photon counting CT image reconstruction method can improve the temporal resolution.</p></div><div><h3>Methods</h3><p>Triple-source saddle-curve cone-beam trajectory was rearranged into four trajectory sets for simulation and reconstruction. Projection images in different energy bins were simulated by forward projection and photon counting CT respond model simulation. After simulation, the object was reconstructed using Katsevich’s theory after photon counts correction using the pseudo inverse of photon counting CT response matrix. The material decomposition can be performed based on images in different energy bins.</p></div><div><h3>Results</h3><p>Root mean square error (RMSE) and structural similarity index (SSIM) are calculated to quantify the image quality of reconstruction images. Compared with FDK images, the RMSE for the triple-source image was improved by 27%, 21%, 14%, 8%, and 6% for the reconstrued image of 20–33, 33–47, 47–58, 58–69, 69–80 keV energy bin. The SSIM was improved by 1.031%, 0.665%, 0.396%, 0.235%, 0.174% for corresponding energy bin. The decomposition image based on corrected images shows improved RMSE and SSIM, each by 33.861% and 0.345%. SSIM of corrected decomposition image of iodine reaches 99.415% of the original image.</p></div><div><h3>Conclusions</h3><p>A new Triple-source saddle-curve cone-beam PC CT image reconstruction method was developed in this work. The exact reconstruction of the triple-source saddle-curve improved both the image quality and temporal resolution.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0939388922000976/pdfft?md5=cbc77a0b4c1832ccbc8b5cf2a1e8cbb2&pid=1-s2.0-S0939388922000976-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939388922000976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939388922000976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Triple-source saddle-curve cone-beam photon counting CT image reconstruction: A simulation study
Purpose
The most common detector material in the PC CT system, cannot achieve the best performance at a relatively higher photon flux rate. In the reconstruction view, the most commonly used filtered back projection, is not able to provide sufficient reconstructed image quality in spectral computed tomography (CT). Developing a triple-source saddle-curve cone-beam photon counting CT image reconstruction method can improve the temporal resolution.
Methods
Triple-source saddle-curve cone-beam trajectory was rearranged into four trajectory sets for simulation and reconstruction. Projection images in different energy bins were simulated by forward projection and photon counting CT respond model simulation. After simulation, the object was reconstructed using Katsevich’s theory after photon counts correction using the pseudo inverse of photon counting CT response matrix. The material decomposition can be performed based on images in different energy bins.
Results
Root mean square error (RMSE) and structural similarity index (SSIM) are calculated to quantify the image quality of reconstruction images. Compared with FDK images, the RMSE for the triple-source image was improved by 27%, 21%, 14%, 8%, and 6% for the reconstrued image of 20–33, 33–47, 47–58, 58–69, 69–80 keV energy bin. The SSIM was improved by 1.031%, 0.665%, 0.396%, 0.235%, 0.174% for corresponding energy bin. The decomposition image based on corrected images shows improved RMSE and SSIM, each by 33.861% and 0.345%. SSIM of corrected decomposition image of iodine reaches 99.415% of the original image.
Conclusions
A new Triple-source saddle-curve cone-beam PC CT image reconstruction method was developed in this work. The exact reconstruction of the triple-source saddle-curve improved both the image quality and temporal resolution.