Christos Thomadakis, Loukia Meligkotsidou, Constantin T Yiannoutsos, Giota Touloumi
{"title":"利用故障子模型的累积发生率函数对纵向数据和竞争风险数据进行联合建模,并考虑到通过双重抽样可能出现的故障原因分类错误。","authors":"Christos Thomadakis, Loukia Meligkotsidou, Constantin T Yiannoutsos, Giota Touloumi","doi":"10.1093/biostatistics/kxac043","DOIUrl":null,"url":null,"abstract":"<p><p>Most of the literature on joint modeling of longitudinal and competing-risk data is based on cause-specific hazards, although modeling of the cumulative incidence function (CIF) is an easier and more direct approach to evaluate the prognosis of an event. We propose a flexible class of shared parameter models to jointly model a normally distributed marker over time and multiple causes of failure using CIFs for the survival submodels, with CIFs depending on the \"true\" marker value over time (i.e., removing the measurement error). The generalized odds rate transformation is applied, thus a proportional subdistribution hazards model is a special case. The requirement that the all-cause CIF should be bounded by 1 is formally considered. The proposed models are extended to account for potential failure cause misclassification, where the true failure causes are available in a small random sample of individuals. We also provide a multistate representation of the whole population by defining mutually exclusive states based on the marker values and the competing risks. Based solely on the assumed joint model, we derive fully Bayesian posterior samples for state occupation and transition probabilities. The proposed approach is evaluated in a simulation study and, as an illustration, it is fitted to real data from people with HIV.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724131/pdf/","citationCount":"0","resultStr":"{\"title\":\"Joint modeling of longitudinal and competing-risk data using cumulative incidence functions for the failure submodels accounting for potential failure cause misclassification through double sampling.\",\"authors\":\"Christos Thomadakis, Loukia Meligkotsidou, Constantin T Yiannoutsos, Giota Touloumi\",\"doi\":\"10.1093/biostatistics/kxac043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most of the literature on joint modeling of longitudinal and competing-risk data is based on cause-specific hazards, although modeling of the cumulative incidence function (CIF) is an easier and more direct approach to evaluate the prognosis of an event. We propose a flexible class of shared parameter models to jointly model a normally distributed marker over time and multiple causes of failure using CIFs for the survival submodels, with CIFs depending on the \\\"true\\\" marker value over time (i.e., removing the measurement error). The generalized odds rate transformation is applied, thus a proportional subdistribution hazards model is a special case. The requirement that the all-cause CIF should be bounded by 1 is formally considered. The proposed models are extended to account for potential failure cause misclassification, where the true failure causes are available in a small random sample of individuals. We also provide a multistate representation of the whole population by defining mutually exclusive states based on the marker values and the competing risks. Based solely on the assumed joint model, we derive fully Bayesian posterior samples for state occupation and transition probabilities. The proposed approach is evaluated in a simulation study and, as an illustration, it is fitted to real data from people with HIV.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724131/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxac043\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxac043","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Joint modeling of longitudinal and competing-risk data using cumulative incidence functions for the failure submodels accounting for potential failure cause misclassification through double sampling.
Most of the literature on joint modeling of longitudinal and competing-risk data is based on cause-specific hazards, although modeling of the cumulative incidence function (CIF) is an easier and more direct approach to evaluate the prognosis of an event. We propose a flexible class of shared parameter models to jointly model a normally distributed marker over time and multiple causes of failure using CIFs for the survival submodels, with CIFs depending on the "true" marker value over time (i.e., removing the measurement error). The generalized odds rate transformation is applied, thus a proportional subdistribution hazards model is a special case. The requirement that the all-cause CIF should be bounded by 1 is formally considered. The proposed models are extended to account for potential failure cause misclassification, where the true failure causes are available in a small random sample of individuals. We also provide a multistate representation of the whole population by defining mutually exclusive states based on the marker values and the competing risks. Based solely on the assumed joint model, we derive fully Bayesian posterior samples for state occupation and transition probabilities. The proposed approach is evaluated in a simulation study and, as an illustration, it is fitted to real data from people with HIV.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.