Wenqian Wang, Kouichi Tabu, Alapati Aimaitijiang, Tetsuya Taga
{"title":"从铁代谢的角度看癌症干细胞的耐药性。","authors":"Wenqian Wang, Kouichi Tabu, Alapati Aimaitijiang, Tetsuya Taga","doi":"10.1186/s41232-022-00220-y","DOIUrl":null,"url":null,"abstract":"<p><p>Due to increased resistance to standard chemo/radiotherapies and relapse, highly tumorigenic cancer stem cells (CSCs) have been proposed as a promising target for the development of effective cancer treatments. In order to develop innovative cancer therapies that target CSCs, much attention has focused on the iron metabolism of CSCs, which has been considered to contribute to self-renewal of CSCs. Here, we review recent advances in iron metabolism and conventional iron metabolism-targeted cancer therapies, as well as therapy resistance of CSCs and potential treatment options to overcome them, which provide important insights into therapeutic strategies against intractable cancers. Potential treatment options targeting iron homeostasis, including small-molecule inhibitors, nanotechnology platforms, ferroptosis, and 5-ALA-PDT, might be a focus of future research for the development of innovative cancer therapies that tackle CSCs.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632139/pdf/","citationCount":"2","resultStr":"{\"title\":\"Therapy-resistant nature of cancer stem cells in view of iron metabolism.\",\"authors\":\"Wenqian Wang, Kouichi Tabu, Alapati Aimaitijiang, Tetsuya Taga\",\"doi\":\"10.1186/s41232-022-00220-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to increased resistance to standard chemo/radiotherapies and relapse, highly tumorigenic cancer stem cells (CSCs) have been proposed as a promising target for the development of effective cancer treatments. In order to develop innovative cancer therapies that target CSCs, much attention has focused on the iron metabolism of CSCs, which has been considered to contribute to self-renewal of CSCs. Here, we review recent advances in iron metabolism and conventional iron metabolism-targeted cancer therapies, as well as therapy resistance of CSCs and potential treatment options to overcome them, which provide important insights into therapeutic strategies against intractable cancers. Potential treatment options targeting iron homeostasis, including small-molecule inhibitors, nanotechnology platforms, ferroptosis, and 5-ALA-PDT, might be a focus of future research for the development of innovative cancer therapies that tackle CSCs.</p>\",\"PeriodicalId\":13588,\"journal\":{\"name\":\"Inflammation and Regeneration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632139/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation and Regeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s41232-022-00220-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation and Regeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s41232-022-00220-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Therapy-resistant nature of cancer stem cells in view of iron metabolism.
Due to increased resistance to standard chemo/radiotherapies and relapse, highly tumorigenic cancer stem cells (CSCs) have been proposed as a promising target for the development of effective cancer treatments. In order to develop innovative cancer therapies that target CSCs, much attention has focused on the iron metabolism of CSCs, which has been considered to contribute to self-renewal of CSCs. Here, we review recent advances in iron metabolism and conventional iron metabolism-targeted cancer therapies, as well as therapy resistance of CSCs and potential treatment options to overcome them, which provide important insights into therapeutic strategies against intractable cancers. Potential treatment options targeting iron homeostasis, including small-molecule inhibitors, nanotechnology platforms, ferroptosis, and 5-ALA-PDT, might be a focus of future research for the development of innovative cancer therapies that tackle CSCs.
期刊介绍:
Inflammation and Regeneration is the official journal of the Japanese Society of Inflammation and Regeneration (JSIR). This journal provides an open access forum which covers a wide range of scientific topics in the basic and clinical researches on inflammation and regenerative medicine. It also covers investigations of infectious diseases, including COVID-19 and other emerging infectious diseases, which involve the inflammatory responses.
Inflammation and Regeneration publishes papers in the following categories: research article, note, rapid communication, case report, review and clinical drug evaluation.