机械拉伸通过促进干细胞自我更新来促进肠道类器官的扩张和再生。

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Fanlu Meng, Congcong Shen, Li Yang, Chao Ni, Jianyong Huang, Kaijun Lin, Zanxia Cao, Shicai Xu, Wanling Cui, Xiaoxin Wang, Bailing Zhou, Chunyang Xiong, Jihua Wang, Bing Zhao
{"title":"机械拉伸通过促进干细胞自我更新来促进肠道类器官的扩张和再生。","authors":"Fanlu Meng,&nbsp;Congcong Shen,&nbsp;Li Yang,&nbsp;Chao Ni,&nbsp;Jianyong Huang,&nbsp;Kaijun Lin,&nbsp;Zanxia Cao,&nbsp;Shicai Xu,&nbsp;Wanling Cui,&nbsp;Xiaoxin Wang,&nbsp;Bailing Zhou,&nbsp;Chunyang Xiong,&nbsp;Jihua Wang,&nbsp;Bing Zhao","doi":"10.1186/s13619-022-00137-4","DOIUrl":null,"url":null,"abstract":"<p><p>Intestinal organoids, derived from intestinal stem cell self-organization, recapitulate the tissue structures and behaviors of the intestinal epithelium, which hold great potential for the study of developmental biology, disease modeling, and regenerative medicine. The intestinal epithelium is exposed to dynamic mechanical forces which exert profound effects on gut development. However, the conventional intestinal organoid culture system neglects the key role of mechanical microenvironments but relies solely on biological factors. Here, we show that adding cyclic stretch to intestinal organoid cultures remarkably up-regulates the signature gene expression and proliferation of intestinal stem cells. Furthermore, mechanical stretching stimulates the expansion of SOX9<sup>+</sup> progenitors by activating the Wnt/β-Catenin signaling. These data demonstrate that the incorporation of mechanical stretch boosts the stemness of intestinal stem cells, thus benefiting organoid growth. Our findings have provided a way to optimize an organoid generation system through understanding cross-talk between biological and mechanical factors, paving the way for the application of mechanical forces in organoid-based models.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":" ","pages":"39"},"PeriodicalIF":5.4000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626719/pdf/","citationCount":"6","resultStr":"{\"title\":\"Mechanical stretching boosts expansion and regeneration of intestinal organoids through fueling stem cell self-renewal.\",\"authors\":\"Fanlu Meng,&nbsp;Congcong Shen,&nbsp;Li Yang,&nbsp;Chao Ni,&nbsp;Jianyong Huang,&nbsp;Kaijun Lin,&nbsp;Zanxia Cao,&nbsp;Shicai Xu,&nbsp;Wanling Cui,&nbsp;Xiaoxin Wang,&nbsp;Bailing Zhou,&nbsp;Chunyang Xiong,&nbsp;Jihua Wang,&nbsp;Bing Zhao\",\"doi\":\"10.1186/s13619-022-00137-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intestinal organoids, derived from intestinal stem cell self-organization, recapitulate the tissue structures and behaviors of the intestinal epithelium, which hold great potential for the study of developmental biology, disease modeling, and regenerative medicine. The intestinal epithelium is exposed to dynamic mechanical forces which exert profound effects on gut development. However, the conventional intestinal organoid culture system neglects the key role of mechanical microenvironments but relies solely on biological factors. Here, we show that adding cyclic stretch to intestinal organoid cultures remarkably up-regulates the signature gene expression and proliferation of intestinal stem cells. Furthermore, mechanical stretching stimulates the expansion of SOX9<sup>+</sup> progenitors by activating the Wnt/β-Catenin signaling. These data demonstrate that the incorporation of mechanical stretch boosts the stemness of intestinal stem cells, thus benefiting organoid growth. Our findings have provided a way to optimize an organoid generation system through understanding cross-talk between biological and mechanical factors, paving the way for the application of mechanical forces in organoid-based models.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\" \",\"pages\":\"39\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626719/pdf/\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13619-022-00137-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13619-022-00137-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 6

摘要

肠道类器官来源于肠道干细胞的自组织,概括了肠道上皮的组织结构和行为,在发育生物学、疾病建模和再生医学的研究中具有很大的潜力。肠道上皮受到动态机械力的影响,对肠道发育产生深远的影响。然而,传统的肠道类器官培养系统忽视了机械微环境的关键作用,而仅仅依赖于生物因素。本研究表明,在肠道类器官培养物中添加循环拉伸显著上调了肠道干细胞的特征基因表达和增殖。此外,机械拉伸通过激活Wnt/β-Catenin信号传导刺激SOX9+祖细胞的扩张。这些数据表明,机械拉伸的结合促进了肠道干细胞的干性,从而有利于类器官的生长。我们的发现提供了一种通过理解生物和机械因素之间的串扰来优化类器官生成系统的方法,为机械力在类器官模型中的应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanical stretching boosts expansion and regeneration of intestinal organoids through fueling stem cell self-renewal.

Mechanical stretching boosts expansion and regeneration of intestinal organoids through fueling stem cell self-renewal.

Mechanical stretching boosts expansion and regeneration of intestinal organoids through fueling stem cell self-renewal.

Mechanical stretching boosts expansion and regeneration of intestinal organoids through fueling stem cell self-renewal.

Intestinal organoids, derived from intestinal stem cell self-organization, recapitulate the tissue structures and behaviors of the intestinal epithelium, which hold great potential for the study of developmental biology, disease modeling, and regenerative medicine. The intestinal epithelium is exposed to dynamic mechanical forces which exert profound effects on gut development. However, the conventional intestinal organoid culture system neglects the key role of mechanical microenvironments but relies solely on biological factors. Here, we show that adding cyclic stretch to intestinal organoid cultures remarkably up-regulates the signature gene expression and proliferation of intestinal stem cells. Furthermore, mechanical stretching stimulates the expansion of SOX9+ progenitors by activating the Wnt/β-Catenin signaling. These data demonstrate that the incorporation of mechanical stretch boosts the stemness of intestinal stem cells, thus benefiting organoid growth. Our findings have provided a way to optimize an organoid generation system through understanding cross-talk between biological and mechanical factors, paving the way for the application of mechanical forces in organoid-based models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信