{"title":"机械拉伸通过促进干细胞自我更新来促进肠道类器官的扩张和再生。","authors":"Fanlu Meng, Congcong Shen, Li Yang, Chao Ni, Jianyong Huang, Kaijun Lin, Zanxia Cao, Shicai Xu, Wanling Cui, Xiaoxin Wang, Bailing Zhou, Chunyang Xiong, Jihua Wang, Bing Zhao","doi":"10.1186/s13619-022-00137-4","DOIUrl":null,"url":null,"abstract":"<p><p>Intestinal organoids, derived from intestinal stem cell self-organization, recapitulate the tissue structures and behaviors of the intestinal epithelium, which hold great potential for the study of developmental biology, disease modeling, and regenerative medicine. The intestinal epithelium is exposed to dynamic mechanical forces which exert profound effects on gut development. However, the conventional intestinal organoid culture system neglects the key role of mechanical microenvironments but relies solely on biological factors. Here, we show that adding cyclic stretch to intestinal organoid cultures remarkably up-regulates the signature gene expression and proliferation of intestinal stem cells. Furthermore, mechanical stretching stimulates the expansion of SOX9<sup>+</sup> progenitors by activating the Wnt/β-Catenin signaling. These data demonstrate that the incorporation of mechanical stretch boosts the stemness of intestinal stem cells, thus benefiting organoid growth. Our findings have provided a way to optimize an organoid generation system through understanding cross-talk between biological and mechanical factors, paving the way for the application of mechanical forces in organoid-based models.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":" ","pages":"39"},"PeriodicalIF":5.4000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626719/pdf/","citationCount":"6","resultStr":"{\"title\":\"Mechanical stretching boosts expansion and regeneration of intestinal organoids through fueling stem cell self-renewal.\",\"authors\":\"Fanlu Meng, Congcong Shen, Li Yang, Chao Ni, Jianyong Huang, Kaijun Lin, Zanxia Cao, Shicai Xu, Wanling Cui, Xiaoxin Wang, Bailing Zhou, Chunyang Xiong, Jihua Wang, Bing Zhao\",\"doi\":\"10.1186/s13619-022-00137-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intestinal organoids, derived from intestinal stem cell self-organization, recapitulate the tissue structures and behaviors of the intestinal epithelium, which hold great potential for the study of developmental biology, disease modeling, and regenerative medicine. The intestinal epithelium is exposed to dynamic mechanical forces which exert profound effects on gut development. However, the conventional intestinal organoid culture system neglects the key role of mechanical microenvironments but relies solely on biological factors. Here, we show that adding cyclic stretch to intestinal organoid cultures remarkably up-regulates the signature gene expression and proliferation of intestinal stem cells. Furthermore, mechanical stretching stimulates the expansion of SOX9<sup>+</sup> progenitors by activating the Wnt/β-Catenin signaling. These data demonstrate that the incorporation of mechanical stretch boosts the stemness of intestinal stem cells, thus benefiting organoid growth. Our findings have provided a way to optimize an organoid generation system through understanding cross-talk between biological and mechanical factors, paving the way for the application of mechanical forces in organoid-based models.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\" \",\"pages\":\"39\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626719/pdf/\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13619-022-00137-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13619-022-00137-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Mechanical stretching boosts expansion and regeneration of intestinal organoids through fueling stem cell self-renewal.
Intestinal organoids, derived from intestinal stem cell self-organization, recapitulate the tissue structures and behaviors of the intestinal epithelium, which hold great potential for the study of developmental biology, disease modeling, and regenerative medicine. The intestinal epithelium is exposed to dynamic mechanical forces which exert profound effects on gut development. However, the conventional intestinal organoid culture system neglects the key role of mechanical microenvironments but relies solely on biological factors. Here, we show that adding cyclic stretch to intestinal organoid cultures remarkably up-regulates the signature gene expression and proliferation of intestinal stem cells. Furthermore, mechanical stretching stimulates the expansion of SOX9+ progenitors by activating the Wnt/β-Catenin signaling. These data demonstrate that the incorporation of mechanical stretch boosts the stemness of intestinal stem cells, thus benefiting organoid growth. Our findings have provided a way to optimize an organoid generation system through understanding cross-talk between biological and mechanical factors, paving the way for the application of mechanical forces in organoid-based models.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.