太阳能转换中量子点-金属氧化物界面的电子转移

IF 4.8 Q2 NANOSCIENCE & NANOTECHNOLOGY
Marco Ballabio,  and , Enrique Cánovas*, 
{"title":"太阳能转换中量子点-金属氧化物界面的电子转移","authors":"Marco Ballabio,&nbsp; and ,&nbsp;Enrique Cánovas*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00015","DOIUrl":null,"url":null,"abstract":"<p >Electron transfer at a donor–acceptor quantum dot–metal oxide interface is a process fundamentally relevant to solar energy conversion architectures as, e.g., sensitized solar cells and solar fuels schemes. As kinetic competition at these technologically relevant interfaces largely determines device performance, this Review surveys several aspects linking electron transfer dynamics and device efficiency; this correlation is done for systems aiming for efficiencies up to and above the ∼33% efficiency limit set by Shockley and Queisser for single gap devices. Furthermore, we critically comment on common pitfalls associated with the interpretation of kinetic data obtained from current methodologies and experimental approaches, and finally, we highlight works that, to our judgment, have contributed to a better understanding of the fundamentals governing electron transfer at quantum dot–metal oxide interfaces.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585894/pdf/","citationCount":"2","resultStr":"{\"title\":\"Electron Transfer at Quantum Dot–Metal Oxide Interfaces for Solar Energy Conversion\",\"authors\":\"Marco Ballabio,&nbsp; and ,&nbsp;Enrique Cánovas*,&nbsp;\",\"doi\":\"10.1021/acsnanoscienceau.2c00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electron transfer at a donor–acceptor quantum dot–metal oxide interface is a process fundamentally relevant to solar energy conversion architectures as, e.g., sensitized solar cells and solar fuels schemes. As kinetic competition at these technologically relevant interfaces largely determines device performance, this Review surveys several aspects linking electron transfer dynamics and device efficiency; this correlation is done for systems aiming for efficiencies up to and above the ∼33% efficiency limit set by Shockley and Queisser for single gap devices. Furthermore, we critically comment on common pitfalls associated with the interpretation of kinetic data obtained from current methodologies and experimental approaches, and finally, we highlight works that, to our judgment, have contributed to a better understanding of the fundamentals governing electron transfer at quantum dot–metal oxide interfaces.</p>\",\"PeriodicalId\":29799,\"journal\":{\"name\":\"ACS Nanoscience Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585894/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nanoscience Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.2c00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.2c00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

在供体-受体量子点-金属氧化物界面上的电子转移是一个与太阳能转换架构(如敏化太阳能电池和太阳能燃料方案)基本相关的过程。由于这些技术相关接口的动态竞争在很大程度上决定了设备性能,本文综述了电子传递动力学和设备效率相关的几个方面;这种相关性适用于效率达到或高于肖克利和奎瑟为单间隙器件设定的效率限制33%的系统。此外,我们批判性地评论了与从当前方法和实验方法中获得的动力学数据解释相关的常见陷阱,最后,我们强调了根据我们的判断,有助于更好地理解量子点金属氧化物界面控制电子转移的基本原理的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electron Transfer at Quantum Dot–Metal Oxide Interfaces for Solar Energy Conversion

Electron Transfer at Quantum Dot–Metal Oxide Interfaces for Solar Energy Conversion

Electron transfer at a donor–acceptor quantum dot–metal oxide interface is a process fundamentally relevant to solar energy conversion architectures as, e.g., sensitized solar cells and solar fuels schemes. As kinetic competition at these technologically relevant interfaces largely determines device performance, this Review surveys several aspects linking electron transfer dynamics and device efficiency; this correlation is done for systems aiming for efficiencies up to and above the ∼33% efficiency limit set by Shockley and Queisser for single gap devices. Furthermore, we critically comment on common pitfalls associated with the interpretation of kinetic data obtained from current methodologies and experimental approaches, and finally, we highlight works that, to our judgment, have contributed to a better understanding of the fundamentals governing electron transfer at quantum dot–metal oxide interfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nanoscience Au
ACS Nanoscience Au 材料科学、纳米科学-
CiteScore
4.20
自引率
0.00%
发文量
0
期刊介绍: ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信