高维诊断分类模型的高效Metropolis-Hastings-Robbins-Monro算法。

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL
Applied Psychological Measurement Pub Date : 2022-11-01 Epub Date: 2022-09-08 DOI:10.1177/01466216221123981
Chen-Wei Liu
{"title":"高维诊断分类模型的高效Metropolis-Hastings-Robbins-Monro算法。","authors":"Chen-Wei Liu","doi":"10.1177/01466216221123981","DOIUrl":null,"url":null,"abstract":"<p><p>The expectation-maximization (EM) algorithm is a commonly used technique for the parameter estimation of the diagnostic classification models (DCMs) with a prespecified Q-matrix; however, it requires <i>O</i>(2 <sup><i>K</i></sup> ) calculations in its expectation-step, which significantly slows down the computation when the number of attributes, <i>K</i>, is large. This study proposes an efficient Metropolis-Hastings Robbins-Monro (eMHRM) algorithm, needing only <i>O</i>(<i>K</i> + 1) calculations in the Monte Carlo expectation step. Furthermore, the item parameters and structural parameters are approximated via the Robbins-Monro algorithm, which does not require time-consuming nonlinear optimization procedures. A series of simulation studies were conducted to compare the eMHRM with the EM and a Metropolis-Hastings (MH) algorithm regarding the parameter recovery and execution time. The outcomes presented in this article reveal that the eMHRM is much more computationally efficient than the EM and MH, and it tends to produce better estimates than the EM when <i>K</i> is large, suggesting that the eMHRM is a promising parameter estimation method for high-dimensional DCMs.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":"46 8","pages":"662-674"},"PeriodicalIF":1.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9574082/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient Metropolis-Hastings Robbins-Monro Algorithm for High-Dimensional Diagnostic Classification Models.\",\"authors\":\"Chen-Wei Liu\",\"doi\":\"10.1177/01466216221123981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The expectation-maximization (EM) algorithm is a commonly used technique for the parameter estimation of the diagnostic classification models (DCMs) with a prespecified Q-matrix; however, it requires <i>O</i>(2 <sup><i>K</i></sup> ) calculations in its expectation-step, which significantly slows down the computation when the number of attributes, <i>K</i>, is large. This study proposes an efficient Metropolis-Hastings Robbins-Monro (eMHRM) algorithm, needing only <i>O</i>(<i>K</i> + 1) calculations in the Monte Carlo expectation step. Furthermore, the item parameters and structural parameters are approximated via the Robbins-Monro algorithm, which does not require time-consuming nonlinear optimization procedures. A series of simulation studies were conducted to compare the eMHRM with the EM and a Metropolis-Hastings (MH) algorithm regarding the parameter recovery and execution time. The outcomes presented in this article reveal that the eMHRM is much more computationally efficient than the EM and MH, and it tends to produce better estimates than the EM when <i>K</i> is large, suggesting that the eMHRM is a promising parameter estimation method for high-dimensional DCMs.</p>\",\"PeriodicalId\":48300,\"journal\":{\"name\":\"Applied Psychological Measurement\",\"volume\":\"46 8\",\"pages\":\"662-674\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9574082/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/01466216221123981\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PSYCHOLOGY, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216221123981","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

期望最大化(EM)算法是用于具有预先指定的Q矩阵的诊断分类模型(DCM)的参数估计的常用技术;然而,它在其期望步骤中需要O(2K)计算,这在属性数量K较大时显著减慢了计算。本研究提出了一种有效的Metropolis Hastings-Robbins-Monro(eMHRM)算法,在蒙特卡罗期望步骤中只需要O(K+1)次计算。此外,项目参数和结构参数通过Robbins-Monro算法进行近似,该算法不需要耗时的非线性优化过程。进行了一系列模拟研究,将eMHRM与EM和Metropolis Hastings(MH)算法在参数恢复和执行时间方面进行了比较。本文中的结果表明,eMHRM在计算上比EM和MH高效得多,并且当K较大时,它往往比EM产生更好的估计,这表明eMHRM是一种很有前途的高维DCM参数估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Metropolis-Hastings Robbins-Monro Algorithm for High-Dimensional Diagnostic Classification Models.

The expectation-maximization (EM) algorithm is a commonly used technique for the parameter estimation of the diagnostic classification models (DCMs) with a prespecified Q-matrix; however, it requires O(2 K ) calculations in its expectation-step, which significantly slows down the computation when the number of attributes, K, is large. This study proposes an efficient Metropolis-Hastings Robbins-Monro (eMHRM) algorithm, needing only O(K + 1) calculations in the Monte Carlo expectation step. Furthermore, the item parameters and structural parameters are approximated via the Robbins-Monro algorithm, which does not require time-consuming nonlinear optimization procedures. A series of simulation studies were conducted to compare the eMHRM with the EM and a Metropolis-Hastings (MH) algorithm regarding the parameter recovery and execution time. The outcomes presented in this article reveal that the eMHRM is much more computationally efficient than the EM and MH, and it tends to produce better estimates than the EM when K is large, suggesting that the eMHRM is a promising parameter estimation method for high-dimensional DCMs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信