{"title":"使用DNA加合物和组织病理学缺陷作为指示,氧化锌纳米颗粒在腹足动物Monacha cartusiana (Mǜller)短期暴露后的生物持久性效力。","authors":"Khaled Yassin Abdel-Halim, Safaa Ramadan Osman, Atef Mohamed Khedr Nassar, Alaa Khozimy, Heba Mohamed El-Danasoury","doi":"10.5620/eaht.2022025","DOIUrl":null,"url":null,"abstract":"<p><p>The cytotoxic effects of metallic nanoparticles (MNPs) might be revealed in genomic and histopathological defects. Therefore current study aimed to assess the bio-persistence and adverse effects potency of zinc oxide nanoparticles (ZnONPs) in the gastropod, Monacha cartusiana. Gastropods were exposed to 74 μg/mL for 14 d then the DNA adduct and histopathological defect profiles were assessed. The results demonstrated significant decline in the estimated genomic template stability (GTS%) in haemolymph and digestive gland ranging from 10.0 to 42.9% in treated animals compared to controls. In the treated and recovered snails, randomly amplified polymorphic (RAPD)-DNA showed the appearance and/or disappearance of DNA bands, indicating DNA damage due to the cytotoxicity of ZnONPs on gastropods. Significant defects in microvilli (MV), nucleus (N), mitochondria (M), and execratory glands (EXG) were noticed in the treated individuals with respect to controls. The remaining live animals were subjected to a recovery period (14 d, without treatment) and slight recovery profiles were reported for both measures compared to the control group. The recovery pattern was recognized in the nucleus/cytoplasm ratio with 0.186 and 0.428 in the treated and recovered groups concerning their control (0.176). The studied parameters reported herein might be reliable tools to assess accumulation and bio-persistence patterns of NPs in the organisms for short-term exposure indicating the cytotoxic and genotoxic effects. Also, gastropods may provide simple models for evaluating the ecotoxicological effects of nanomaterials.</p>","PeriodicalId":11867,"journal":{"name":"Environmental analysis, health and toxicology","volume":" ","pages":"e2022025-0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0d/5d/eaht-37-3-e2022025.PMC9582421.pdf","citationCount":"1","resultStr":"{\"title\":\"Use of DNA adduct and histopathological defects as indications for bio-persistence potency of zinc oxide nanoparticles in gastropod, Monacha cartusiana (Mǜller) after short-term exposure.\",\"authors\":\"Khaled Yassin Abdel-Halim, Safaa Ramadan Osman, Atef Mohamed Khedr Nassar, Alaa Khozimy, Heba Mohamed El-Danasoury\",\"doi\":\"10.5620/eaht.2022025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cytotoxic effects of metallic nanoparticles (MNPs) might be revealed in genomic and histopathological defects. Therefore current study aimed to assess the bio-persistence and adverse effects potency of zinc oxide nanoparticles (ZnONPs) in the gastropod, Monacha cartusiana. Gastropods were exposed to 74 μg/mL for 14 d then the DNA adduct and histopathological defect profiles were assessed. The results demonstrated significant decline in the estimated genomic template stability (GTS%) in haemolymph and digestive gland ranging from 10.0 to 42.9% in treated animals compared to controls. In the treated and recovered snails, randomly amplified polymorphic (RAPD)-DNA showed the appearance and/or disappearance of DNA bands, indicating DNA damage due to the cytotoxicity of ZnONPs on gastropods. Significant defects in microvilli (MV), nucleus (N), mitochondria (M), and execratory glands (EXG) were noticed in the treated individuals with respect to controls. The remaining live animals were subjected to a recovery period (14 d, without treatment) and slight recovery profiles were reported for both measures compared to the control group. The recovery pattern was recognized in the nucleus/cytoplasm ratio with 0.186 and 0.428 in the treated and recovered groups concerning their control (0.176). The studied parameters reported herein might be reliable tools to assess accumulation and bio-persistence patterns of NPs in the organisms for short-term exposure indicating the cytotoxic and genotoxic effects. Also, gastropods may provide simple models for evaluating the ecotoxicological effects of nanomaterials.</p>\",\"PeriodicalId\":11867,\"journal\":{\"name\":\"Environmental analysis, health and toxicology\",\"volume\":\" \",\"pages\":\"e2022025-0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0d/5d/eaht-37-3-e2022025.PMC9582421.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental analysis, health and toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5620/eaht.2022025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental analysis, health and toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5620/eaht.2022025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Use of DNA adduct and histopathological defects as indications for bio-persistence potency of zinc oxide nanoparticles in gastropod, Monacha cartusiana (Mǜller) after short-term exposure.
The cytotoxic effects of metallic nanoparticles (MNPs) might be revealed in genomic and histopathological defects. Therefore current study aimed to assess the bio-persistence and adverse effects potency of zinc oxide nanoparticles (ZnONPs) in the gastropod, Monacha cartusiana. Gastropods were exposed to 74 μg/mL for 14 d then the DNA adduct and histopathological defect profiles were assessed. The results demonstrated significant decline in the estimated genomic template stability (GTS%) in haemolymph and digestive gland ranging from 10.0 to 42.9% in treated animals compared to controls. In the treated and recovered snails, randomly amplified polymorphic (RAPD)-DNA showed the appearance and/or disappearance of DNA bands, indicating DNA damage due to the cytotoxicity of ZnONPs on gastropods. Significant defects in microvilli (MV), nucleus (N), mitochondria (M), and execratory glands (EXG) were noticed in the treated individuals with respect to controls. The remaining live animals were subjected to a recovery period (14 d, without treatment) and slight recovery profiles were reported for both measures compared to the control group. The recovery pattern was recognized in the nucleus/cytoplasm ratio with 0.186 and 0.428 in the treated and recovered groups concerning their control (0.176). The studied parameters reported herein might be reliable tools to assess accumulation and bio-persistence patterns of NPs in the organisms for short-term exposure indicating the cytotoxic and genotoxic effects. Also, gastropods may provide simple models for evaluating the ecotoxicological effects of nanomaterials.