心室是否限制了缺氧海龟的心脏收缩率?心脏腔内收缩反应对伴随长时间缺氧的细胞外变化的比较

IF 2.1 Q3 PHYSIOLOGY
Molly Garner, Jonathan A.W. Stecyk
{"title":"心室是否限制了缺氧海龟的心脏收缩率?心脏腔内收缩反应对伴随长时间缺氧的细胞外变化的比较","authors":"Molly Garner,&nbsp;Jonathan A.W. Stecyk","doi":"10.1016/j.crphys.2022.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>Multiple lines of evidence suggest that an inability of the ventricle to contract in coordination with the pacemaker during anoxia exposure may suppress cardiac pumping rate in anoxia-tolerant turtles. To determine under what extracellular conditions the ventricle could be the weak link that limits cardiac pumping, we compared, under various extracellular conditions, the intrinsic contractile properties of isometrically-contracting ventricular and atrial strips obtained from 21 °C- to 5 °C- acclimated turtles (<em>Trachemys scripta</em>) that had been exposed to either normoxia or anoxia (16 h at 21 °C; 12 days at 5 °C). We found that combined extracellular anoxia, acidosis, and hyperkalemia (AAK), severely disrupted ventricular, but not right or left atrial, excitability and contractibility of 5 °C anoxic turtles. However, combined hypercalcemia and heightened adrenergic stimulation counteracted the negative effects of AAK. We also report that the turtle heart is resilient to prolonged diastolic intervals, which would ensure that contractile force is maintained if arrhythmia were to occur during anoxia exposure. Finally, our findings reinforce that prior temperature and anoxia experiences are central to the intrinsic contractile response of the turtle myocardium to altered extracellular conditions. At 21 °C, prior anoxia exposure preconditioned the ventricle for anoxic and acidosis exposure. At 5 °C, prior anoxia exposure evoked heightened sensitivity of the ventricle to hyperkalemia, as well as all chambers to combined hypercalcemia and increased adrenergic stimulation. Overall, our findings show that the ventricle could limit cardiac pumping rate during prolonged anoxic submergence in cold-acclimated turtles if hypercalcemia and heightened adrenergic stimulation are insufficient to counteract the negative effects of combined extracellular anoxia, acidosis, and hyperkalemia.</p></div>","PeriodicalId":72753,"journal":{"name":"Current research in physiology","volume":"5 ","pages":"Pages 312-326"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b5/8a/main.PMC9301509.pdf","citationCount":"1","resultStr":"{\"title\":\"Does the ventricle limit cardiac contraction rate in the anoxic turtle (Trachemys scripta)? I. Comparison of the intrinsic contractile responses of cardiac chambers to the extracellular changes that accompany prolonged anoxia exposure\",\"authors\":\"Molly Garner,&nbsp;Jonathan A.W. Stecyk\",\"doi\":\"10.1016/j.crphys.2022.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multiple lines of evidence suggest that an inability of the ventricle to contract in coordination with the pacemaker during anoxia exposure may suppress cardiac pumping rate in anoxia-tolerant turtles. To determine under what extracellular conditions the ventricle could be the weak link that limits cardiac pumping, we compared, under various extracellular conditions, the intrinsic contractile properties of isometrically-contracting ventricular and atrial strips obtained from 21 °C- to 5 °C- acclimated turtles (<em>Trachemys scripta</em>) that had been exposed to either normoxia or anoxia (16 h at 21 °C; 12 days at 5 °C). We found that combined extracellular anoxia, acidosis, and hyperkalemia (AAK), severely disrupted ventricular, but not right or left atrial, excitability and contractibility of 5 °C anoxic turtles. However, combined hypercalcemia and heightened adrenergic stimulation counteracted the negative effects of AAK. We also report that the turtle heart is resilient to prolonged diastolic intervals, which would ensure that contractile force is maintained if arrhythmia were to occur during anoxia exposure. Finally, our findings reinforce that prior temperature and anoxia experiences are central to the intrinsic contractile response of the turtle myocardium to altered extracellular conditions. At 21 °C, prior anoxia exposure preconditioned the ventricle for anoxic and acidosis exposure. At 5 °C, prior anoxia exposure evoked heightened sensitivity of the ventricle to hyperkalemia, as well as all chambers to combined hypercalcemia and increased adrenergic stimulation. Overall, our findings show that the ventricle could limit cardiac pumping rate during prolonged anoxic submergence in cold-acclimated turtles if hypercalcemia and heightened adrenergic stimulation are insufficient to counteract the negative effects of combined extracellular anoxia, acidosis, and hyperkalemia.</p></div>\",\"PeriodicalId\":72753,\"journal\":{\"name\":\"Current research in physiology\",\"volume\":\"5 \",\"pages\":\"Pages 312-326\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b5/8a/main.PMC9301509.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current research in physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665944122000323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current research in physiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665944122000323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

多种证据表明,在缺氧暴露时,心室无法与起搏器协调收缩可能会抑制耐缺氧海龟的心泵率。为了确定在什么细胞外条件下心室可能是限制心脏泵送的薄弱环节,我们比较了在各种细胞外条件下,从21°C至5°C驯化的海龟(Trachemys scripta)中获得的等长收缩心室和心房条的固有收缩特性,这些海龟暴露于常氧或缺氧(21°C 16小时;在5°C下12天)。我们发现5°C缺氧龟的细胞外缺氧、酸中毒和高钾血症(AAK)严重破坏心室,但不影响左右心房的兴奋性和收缩性。然而,联合高钙血症和肾上腺素能刺激增强抵消了AAK的负面影响。我们还报道,海龟心脏对延长舒张间隔具有弹性,这将确保在缺氧暴露期间发生心律失常时保持收缩力。最后,我们的研究结果强调,先前的温度和缺氧经历是海龟心肌对改变细胞外条件的内在收缩反应的核心。在21°C时,先前的缺氧暴露使心室预先适应缺氧和酸中毒暴露。在5°C时,先前的缺氧暴露引起心室对高钾血症的敏感性升高,以及所有心室对高钙血症和肾上腺素能刺激增加的联合敏感性升高。总的来说,我们的研究结果表明,如果高钙血症和肾上腺素能刺激不足以抵消细胞外缺氧、酸中毒和高钾血症的负面影响,那么在长时间缺氧浸泡的冷适应海龟中,心室可能会限制心脏泵速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Does the ventricle limit cardiac contraction rate in the anoxic turtle (Trachemys scripta)? I. Comparison of the intrinsic contractile responses of cardiac chambers to the extracellular changes that accompany prolonged anoxia exposure

Does the ventricle limit cardiac contraction rate in the anoxic turtle (Trachemys scripta)? I. Comparison of the intrinsic contractile responses of cardiac chambers to the extracellular changes that accompany prolonged anoxia exposure

Does the ventricle limit cardiac contraction rate in the anoxic turtle (Trachemys scripta)? I. Comparison of the intrinsic contractile responses of cardiac chambers to the extracellular changes that accompany prolonged anoxia exposure

Does the ventricle limit cardiac contraction rate in the anoxic turtle (Trachemys scripta)? I. Comparison of the intrinsic contractile responses of cardiac chambers to the extracellular changes that accompany prolonged anoxia exposure

Multiple lines of evidence suggest that an inability of the ventricle to contract in coordination with the pacemaker during anoxia exposure may suppress cardiac pumping rate in anoxia-tolerant turtles. To determine under what extracellular conditions the ventricle could be the weak link that limits cardiac pumping, we compared, under various extracellular conditions, the intrinsic contractile properties of isometrically-contracting ventricular and atrial strips obtained from 21 °C- to 5 °C- acclimated turtles (Trachemys scripta) that had been exposed to either normoxia or anoxia (16 h at 21 °C; 12 days at 5 °C). We found that combined extracellular anoxia, acidosis, and hyperkalemia (AAK), severely disrupted ventricular, but not right or left atrial, excitability and contractibility of 5 °C anoxic turtles. However, combined hypercalcemia and heightened adrenergic stimulation counteracted the negative effects of AAK. We also report that the turtle heart is resilient to prolonged diastolic intervals, which would ensure that contractile force is maintained if arrhythmia were to occur during anoxia exposure. Finally, our findings reinforce that prior temperature and anoxia experiences are central to the intrinsic contractile response of the turtle myocardium to altered extracellular conditions. At 21 °C, prior anoxia exposure preconditioned the ventricle for anoxic and acidosis exposure. At 5 °C, prior anoxia exposure evoked heightened sensitivity of the ventricle to hyperkalemia, as well as all chambers to combined hypercalcemia and increased adrenergic stimulation. Overall, our findings show that the ventricle could limit cardiac pumping rate during prolonged anoxic submergence in cold-acclimated turtles if hypercalcemia and heightened adrenergic stimulation are insufficient to counteract the negative effects of combined extracellular anoxia, acidosis, and hyperkalemia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
62 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信