{"title":"双岛模型和移民隔离模型的收敛速度","authors":"Brandon Legried, Jonathan Terhorst","doi":"10.1016/j.tpb.2022.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>A number of powerful demographic inference methods have been developed in recent years, with the goal of fitting rich evolutionary models to genetic data obtained from many populations. In this paper we investigate the statistical performance of these methods in the specific case where there is continuous migration between populations. Compared with earlier work, migration significantly complicates the theoretical analysis and requires new techniques. We employ the theories of phase-type distributions and concentration of measure in order to study the two-island and isolation-with-migration models, resulting in both upper and lower bounds on rates of convergence for parametric estimators in migration models. For the upper bounds, we consider inferring rates of coalescent and migration on the basis of directly observing pairwise coalescent times, and, more realistically, when (conditionally) Poisson-distributed mutations dropped on latent trees are observed. We complement these upper bounds with information-theoretic lower bounds which establish a limit, in terms of sample size, below which inference is effectively impossible.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rates of convergence in the two-island and isolation-with-migration models\",\"authors\":\"Brandon Legried, Jonathan Terhorst\",\"doi\":\"10.1016/j.tpb.2022.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A number of powerful demographic inference methods have been developed in recent years, with the goal of fitting rich evolutionary models to genetic data obtained from many populations. In this paper we investigate the statistical performance of these methods in the specific case where there is continuous migration between populations. Compared with earlier work, migration significantly complicates the theoretical analysis and requires new techniques. We employ the theories of phase-type distributions and concentration of measure in order to study the two-island and isolation-with-migration models, resulting in both upper and lower bounds on rates of convergence for parametric estimators in migration models. For the upper bounds, we consider inferring rates of coalescent and migration on the basis of directly observing pairwise coalescent times, and, more realistically, when (conditionally) Poisson-distributed mutations dropped on latent trees are observed. We complement these upper bounds with information-theoretic lower bounds which establish a limit, in terms of sample size, below which inference is effectively impossible.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004058092200051X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004058092200051X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Rates of convergence in the two-island and isolation-with-migration models
A number of powerful demographic inference methods have been developed in recent years, with the goal of fitting rich evolutionary models to genetic data obtained from many populations. In this paper we investigate the statistical performance of these methods in the specific case where there is continuous migration between populations. Compared with earlier work, migration significantly complicates the theoretical analysis and requires new techniques. We employ the theories of phase-type distributions and concentration of measure in order to study the two-island and isolation-with-migration models, resulting in both upper and lower bounds on rates of convergence for parametric estimators in migration models. For the upper bounds, we consider inferring rates of coalescent and migration on the basis of directly observing pairwise coalescent times, and, more realistically, when (conditionally) Poisson-distributed mutations dropped on latent trees are observed. We complement these upper bounds with information-theoretic lower bounds which establish a limit, in terms of sample size, below which inference is effectively impossible.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.