{"title":"用于分析水生环境中儿茶酚和对苯二酚的电化学传感系统:评论。","authors":"Hicham Meskher, Fethi Achi","doi":"10.1080/10408347.2022.2114784","DOIUrl":null,"url":null,"abstract":"<p><p>Because of their unique physical, chemical, and biological characteristics, conductive nanomaterials have a lot of potential for applications in materials science, energy storage, environmental science, biomedicine, sensors/biosensors, and other fields. Recent breakthroughs in the manufacture of carbon materials, conductive polymers, metals, and metal oxide nanoparticles based electrochemical sensors and biosensors for applications in environmental monitoring by detection of catechol (CC) and hydroquinone (HQ) are presented in this review. To achieve this goal, we first introduced recent works that discuss the effects of phenolic compounds and the need for accurate, inexpensive, and quick monitoring, and then we focused on the use of the most important applications of nanomaterials, such as carbon-based materials, metals, and metal oxides nanoparticles, and conductive polymers, to develop sensors to monitor catechol and hydroquinone. Finally, we identified challenges and limits in the field of sensors and biosensors, as well as possibilities and recommendations for developing the field for better future applications. Meanwhile, electrochemical sensors and biosensors for catechol and hydroquinone measurement and monitoring were highlighted and discussed particularly. This review, we feel, will aid in the promotion of nanomaterials for the development of innovative electrical sensors and nanodevices for environmental monitoring.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Sensing Systems for the Analysis of Catechol and Hydroquinone in the Aquatic Environments: A Critical Review.\",\"authors\":\"Hicham Meskher, Fethi Achi\",\"doi\":\"10.1080/10408347.2022.2114784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Because of their unique physical, chemical, and biological characteristics, conductive nanomaterials have a lot of potential for applications in materials science, energy storage, environmental science, biomedicine, sensors/biosensors, and other fields. Recent breakthroughs in the manufacture of carbon materials, conductive polymers, metals, and metal oxide nanoparticles based electrochemical sensors and biosensors for applications in environmental monitoring by detection of catechol (CC) and hydroquinone (HQ) are presented in this review. To achieve this goal, we first introduced recent works that discuss the effects of phenolic compounds and the need for accurate, inexpensive, and quick monitoring, and then we focused on the use of the most important applications of nanomaterials, such as carbon-based materials, metals, and metal oxides nanoparticles, and conductive polymers, to develop sensors to monitor catechol and hydroquinone. Finally, we identified challenges and limits in the field of sensors and biosensors, as well as possibilities and recommendations for developing the field for better future applications. Meanwhile, electrochemical sensors and biosensors for catechol and hydroquinone measurement and monitoring were highlighted and discussed particularly. This review, we feel, will aid in the promotion of nanomaterials for the development of innovative electrical sensors and nanodevices for environmental monitoring.</p>\",\"PeriodicalId\":10744,\"journal\":{\"name\":\"Critical reviews in analytical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in analytical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/10408347.2022.2114784\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in analytical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10408347.2022.2114784","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Electrochemical Sensing Systems for the Analysis of Catechol and Hydroquinone in the Aquatic Environments: A Critical Review.
Because of their unique physical, chemical, and biological characteristics, conductive nanomaterials have a lot of potential for applications in materials science, energy storage, environmental science, biomedicine, sensors/biosensors, and other fields. Recent breakthroughs in the manufacture of carbon materials, conductive polymers, metals, and metal oxide nanoparticles based electrochemical sensors and biosensors for applications in environmental monitoring by detection of catechol (CC) and hydroquinone (HQ) are presented in this review. To achieve this goal, we first introduced recent works that discuss the effects of phenolic compounds and the need for accurate, inexpensive, and quick monitoring, and then we focused on the use of the most important applications of nanomaterials, such as carbon-based materials, metals, and metal oxides nanoparticles, and conductive polymers, to develop sensors to monitor catechol and hydroquinone. Finally, we identified challenges and limits in the field of sensors and biosensors, as well as possibilities and recommendations for developing the field for better future applications. Meanwhile, electrochemical sensors and biosensors for catechol and hydroquinone measurement and monitoring were highlighted and discussed particularly. This review, we feel, will aid in the promotion of nanomaterials for the development of innovative electrical sensors and nanodevices for environmental monitoring.
期刊介绍:
Critical Reviews in Analytical Chemistry continues to be a dependable resource for both the expert and the student by providing in-depth, scholarly, insightful reviews of important topics within the discipline of analytical chemistry and related measurement sciences. The journal exclusively publishes review articles that illuminate the underlying science, that evaluate the field''s status by putting recent developments into proper perspective and context, and that speculate on possible future developments. A limited number of articles are of a "tutorial" format written by experts for scientists seeking introduction or clarification in a new area.
This journal serves as a forum for linking various underlying components in broad and interdisciplinary means, while maintaining balance between applied and fundamental research. Topics we are interested in receiving reviews on are the following:
· chemical analysis;
· instrumentation;
· chemometrics;
· analytical biochemistry;
· medicinal analysis;
· forensics;
· environmental sciences;
· applied physics;
· and material science.