Hongjing Wang, Hongyong Chen, Shuli Yin, Qiqi Mao, Chunjie Li, You Xu, Xiaonian Li, Ziqiang Wang, Liang Wang
{"title":"B, p共掺杂PdCu纳米刺组件用于增强氧还原电解。","authors":"Hongjing Wang, Hongyong Chen, Shuli Yin, Qiqi Mao, Chunjie Li, You Xu, Xiaonian Li, Ziqiang Wang, Liang Wang","doi":"10.1088/1361-6528/ac83c9","DOIUrl":null,"url":null,"abstract":"<p><p>Nonmetal doping is a promising strategy to improve electrocatalytic performance of noble metal based catalysts for oxygen reduction reaction (ORR). Herein, we report a facile method to fabricate PdCuBP nanothorn assemblies (PdCuBP NTAs) by co-doping B and P into pre-synthesized PdCu NTAs using NaBH<sub>4</sub>and NaH<sub>2</sub>PO<sub>2</sub>as B source and P source, respectively. The metal-nonmetal structure and multi-branched morphology can optimize oxygen adsorption energy and avoid catalyst migration, agglomeration and Ostwald ripening. As such, the obtained PdCuBP NTAs exhibit efficient activity and excellent long-term stability for ORR. This research offers an excellent strategy for co-doping nonmetal elements into metal nanocrystals with controllable composition and structure to improve electrocatalytic ORR performance.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":"33 45","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"B, P-co-doped PdCu nanothorn assemblies for enhanced oxygen reduction electrolysis.\",\"authors\":\"Hongjing Wang, Hongyong Chen, Shuli Yin, Qiqi Mao, Chunjie Li, You Xu, Xiaonian Li, Ziqiang Wang, Liang Wang\",\"doi\":\"10.1088/1361-6528/ac83c9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nonmetal doping is a promising strategy to improve electrocatalytic performance of noble metal based catalysts for oxygen reduction reaction (ORR). Herein, we report a facile method to fabricate PdCuBP nanothorn assemblies (PdCuBP NTAs) by co-doping B and P into pre-synthesized PdCu NTAs using NaBH<sub>4</sub>and NaH<sub>2</sub>PO<sub>2</sub>as B source and P source, respectively. The metal-nonmetal structure and multi-branched morphology can optimize oxygen adsorption energy and avoid catalyst migration, agglomeration and Ostwald ripening. As such, the obtained PdCuBP NTAs exhibit efficient activity and excellent long-term stability for ORR. This research offers an excellent strategy for co-doping nonmetal elements into metal nanocrystals with controllable composition and structure to improve electrocatalytic ORR performance.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\"33 45\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ac83c9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ac83c9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
B, P-co-doped PdCu nanothorn assemblies for enhanced oxygen reduction electrolysis.
Nonmetal doping is a promising strategy to improve electrocatalytic performance of noble metal based catalysts for oxygen reduction reaction (ORR). Herein, we report a facile method to fabricate PdCuBP nanothorn assemblies (PdCuBP NTAs) by co-doping B and P into pre-synthesized PdCu NTAs using NaBH4and NaH2PO2as B source and P source, respectively. The metal-nonmetal structure and multi-branched morphology can optimize oxygen adsorption energy and avoid catalyst migration, agglomeration and Ostwald ripening. As such, the obtained PdCuBP NTAs exhibit efficient activity and excellent long-term stability for ORR. This research offers an excellent strategy for co-doping nonmetal elements into metal nanocrystals with controllable composition and structure to improve electrocatalytic ORR performance.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.