{"title":"半凝集素-3和内皮功能在心衰患者预后中的作用。","authors":"Vasiliki Tsigkou, Gerasimos Siasos, Evangelos Oikonomou, Marina Zaromitidou, Konstantinos Mourouzis, Stathis Dimitropoulos, Evanthia Bletsa, Nikolaos Gouliopoulos, Panagiota K Stampouloglou, Maria-Evi Panoilia, Georgios Marinos, Konstantinos Tsioufis, Manolis Vavuranakis, Dimitris Tousoulis","doi":"10.5603/CJ.a2022.0074","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Heart failure (HF) is nowadays classified as HF with reduced ejection fraction (HFrEF), HF with mildly reduced EF (HFmrEF), and HF with preserved EF (HFpEF). Endothelial dysfunction (assessed by flow-mediated dilatation [FMD]), increased arterial stiffness (assessed by carotid-femoral pulse-wave velocity [PWV]), and galectin-3, a biomarker of myocardial fibrosis, have been linked to major adverse cardiovascular events (MACE) in patients with ischemic HF.</p><p><strong>Methods: </strong>In this study we prospectively enrolled 340 patients with stable ischemic HF. We assessed the brachial artery FMD, carotid-femoral PWV, and galectin-3 levels, and patients were followed up for MACE according to HF group.</p><p><strong>Results: </strong>Interestingly, the FMD values exhibited a stepwise improvement according to left ventricular ejection fraction (LVEF) (HFrEF: 4.74 ± 2.35% vs. HFmrEF: 4.97 ± 2.81% vs. HFpEF: 5.94 ± ± 3.46%, p = 0.01), which remained significant after the evaluation of possible confounders including age, sex, cardiovascular risk factors, and number of significantly stenosed epicardial coronary arteries (b coefficient: 0.990, 95% confidence interval: 0.166-1.814, p = 0.019). Single-vessel coronary artery disease was more frequent in the group of HFpEF (HFrEF: 56% vs. HFmrEF: 64% vs. HFpEF: 73%, p = 0.049). PWV did not display any association with LVEF. Patients who presented MACE exhibited worse FMD values (4.51 ± 2.35% vs. 5.32 ± 2.67%, p = 0.02), and the highest tertile of galectin-3 was linked to more MACEs (36% vs. 5.9%, p = 0.01).</p><p><strong>Conclusions: </strong>Flow-mediated dilatation displayed a linear improvement with LVEF in patients with ischemic HF. Deteriorated values are associated with MACE. Higher levels of galectin-3 might be used for risk stratification of patients with ischemic HF.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"725-733"},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635724/pdf/","citationCount":"3","resultStr":"{\"title\":\"The prognostic role of galectin-3 and endothelial function in patients with heart failure.\",\"authors\":\"Vasiliki Tsigkou, Gerasimos Siasos, Evangelos Oikonomou, Marina Zaromitidou, Konstantinos Mourouzis, Stathis Dimitropoulos, Evanthia Bletsa, Nikolaos Gouliopoulos, Panagiota K Stampouloglou, Maria-Evi Panoilia, Georgios Marinos, Konstantinos Tsioufis, Manolis Vavuranakis, Dimitris Tousoulis\",\"doi\":\"10.5603/CJ.a2022.0074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Heart failure (HF) is nowadays classified as HF with reduced ejection fraction (HFrEF), HF with mildly reduced EF (HFmrEF), and HF with preserved EF (HFpEF). Endothelial dysfunction (assessed by flow-mediated dilatation [FMD]), increased arterial stiffness (assessed by carotid-femoral pulse-wave velocity [PWV]), and galectin-3, a biomarker of myocardial fibrosis, have been linked to major adverse cardiovascular events (MACE) in patients with ischemic HF.</p><p><strong>Methods: </strong>In this study we prospectively enrolled 340 patients with stable ischemic HF. We assessed the brachial artery FMD, carotid-femoral PWV, and galectin-3 levels, and patients were followed up for MACE according to HF group.</p><p><strong>Results: </strong>Interestingly, the FMD values exhibited a stepwise improvement according to left ventricular ejection fraction (LVEF) (HFrEF: 4.74 ± 2.35% vs. HFmrEF: 4.97 ± 2.81% vs. HFpEF: 5.94 ± ± 3.46%, p = 0.01), which remained significant after the evaluation of possible confounders including age, sex, cardiovascular risk factors, and number of significantly stenosed epicardial coronary arteries (b coefficient: 0.990, 95% confidence interval: 0.166-1.814, p = 0.019). Single-vessel coronary artery disease was more frequent in the group of HFpEF (HFrEF: 56% vs. HFmrEF: 64% vs. HFpEF: 73%, p = 0.049). PWV did not display any association with LVEF. Patients who presented MACE exhibited worse FMD values (4.51 ± 2.35% vs. 5.32 ± 2.67%, p = 0.02), and the highest tertile of galectin-3 was linked to more MACEs (36% vs. 5.9%, p = 0.01).</p><p><strong>Conclusions: </strong>Flow-mediated dilatation displayed a linear improvement with LVEF in patients with ischemic HF. Deteriorated values are associated with MACE. Higher levels of galectin-3 might be used for risk stratification of patients with ischemic HF.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"725-733\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635724/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5603/CJ.a2022.0074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5603/CJ.a2022.0074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
The prognostic role of galectin-3 and endothelial function in patients with heart failure.
Background: Heart failure (HF) is nowadays classified as HF with reduced ejection fraction (HFrEF), HF with mildly reduced EF (HFmrEF), and HF with preserved EF (HFpEF). Endothelial dysfunction (assessed by flow-mediated dilatation [FMD]), increased arterial stiffness (assessed by carotid-femoral pulse-wave velocity [PWV]), and galectin-3, a biomarker of myocardial fibrosis, have been linked to major adverse cardiovascular events (MACE) in patients with ischemic HF.
Methods: In this study we prospectively enrolled 340 patients with stable ischemic HF. We assessed the brachial artery FMD, carotid-femoral PWV, and galectin-3 levels, and patients were followed up for MACE according to HF group.
Results: Interestingly, the FMD values exhibited a stepwise improvement according to left ventricular ejection fraction (LVEF) (HFrEF: 4.74 ± 2.35% vs. HFmrEF: 4.97 ± 2.81% vs. HFpEF: 5.94 ± ± 3.46%, p = 0.01), which remained significant after the evaluation of possible confounders including age, sex, cardiovascular risk factors, and number of significantly stenosed epicardial coronary arteries (b coefficient: 0.990, 95% confidence interval: 0.166-1.814, p = 0.019). Single-vessel coronary artery disease was more frequent in the group of HFpEF (HFrEF: 56% vs. HFmrEF: 64% vs. HFpEF: 73%, p = 0.049). PWV did not display any association with LVEF. Patients who presented MACE exhibited worse FMD values (4.51 ± 2.35% vs. 5.32 ± 2.67%, p = 0.02), and the highest tertile of galectin-3 was linked to more MACEs (36% vs. 5.9%, p = 0.01).
Conclusions: Flow-mediated dilatation displayed a linear improvement with LVEF in patients with ischemic HF. Deteriorated values are associated with MACE. Higher levels of galectin-3 might be used for risk stratification of patients with ischemic HF.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.