{"title":"潜在和误差非正态性对结构方程建模中拟合测度的影响。","authors":"Lisa J Jobst, Max Auerswald, Morten Moshagen","doi":"10.1177/00131644211046201","DOIUrl":null,"url":null,"abstract":"<p><p>Prior studies investigating the effects of non-normality in structural equation modeling typically induced non-normality in the indicator variables. This procedure neglects the factor analytic structure of the data, which is defined as the sum of latent variables and errors, so it is unclear whether previous results hold if the source of non-normality is considered. We conducted a Monte Carlo simulation manipulating the underlying multivariate distribution to assess the effect of the source of non-normality (latent, error, and marginal conditions with either multivariate normal or non-normal marginal distributions) on different measures of fit (empirical rejection rates for the likelihood-ratio model test statistic, the root mean square error of approximation, the standardized root mean square residual, and the comparative fit index). We considered different estimation methods (maximum likelihood, generalized least squares, and (un)modified asymptotically distribution-free), sample sizes, and the extent of non-normality in correctly specified and misspecified models to investigate their performance. The results show that all measures of fit were affected by the source of non-normality but with varying patterns for the analyzed estimation methods.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"82 5","pages":"911-937"},"PeriodicalIF":2.1000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386883/pdf/10.1177_00131644211046201.pdf","citationCount":"4","resultStr":"{\"title\":\"The Effect of Latent and Error Non-Normality on Measures of Fit in Structural Equation Modeling.\",\"authors\":\"Lisa J Jobst, Max Auerswald, Morten Moshagen\",\"doi\":\"10.1177/00131644211046201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prior studies investigating the effects of non-normality in structural equation modeling typically induced non-normality in the indicator variables. This procedure neglects the factor analytic structure of the data, which is defined as the sum of latent variables and errors, so it is unclear whether previous results hold if the source of non-normality is considered. We conducted a Monte Carlo simulation manipulating the underlying multivariate distribution to assess the effect of the source of non-normality (latent, error, and marginal conditions with either multivariate normal or non-normal marginal distributions) on different measures of fit (empirical rejection rates for the likelihood-ratio model test statistic, the root mean square error of approximation, the standardized root mean square residual, and the comparative fit index). We considered different estimation methods (maximum likelihood, generalized least squares, and (un)modified asymptotically distribution-free), sample sizes, and the extent of non-normality in correctly specified and misspecified models to investigate their performance. The results show that all measures of fit were affected by the source of non-normality but with varying patterns for the analyzed estimation methods.</p>\",\"PeriodicalId\":11502,\"journal\":{\"name\":\"Educational and Psychological Measurement\",\"volume\":\"82 5\",\"pages\":\"911-937\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386883/pdf/10.1177_00131644211046201.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Educational and Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00131644211046201\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational and Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644211046201","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The Effect of Latent and Error Non-Normality on Measures of Fit in Structural Equation Modeling.
Prior studies investigating the effects of non-normality in structural equation modeling typically induced non-normality in the indicator variables. This procedure neglects the factor analytic structure of the data, which is defined as the sum of latent variables and errors, so it is unclear whether previous results hold if the source of non-normality is considered. We conducted a Monte Carlo simulation manipulating the underlying multivariate distribution to assess the effect of the source of non-normality (latent, error, and marginal conditions with either multivariate normal or non-normal marginal distributions) on different measures of fit (empirical rejection rates for the likelihood-ratio model test statistic, the root mean square error of approximation, the standardized root mean square residual, and the comparative fit index). We considered different estimation methods (maximum likelihood, generalized least squares, and (un)modified asymptotically distribution-free), sample sizes, and the extent of non-normality in correctly specified and misspecified models to investigate their performance. The results show that all measures of fit were affected by the source of non-normality but with varying patterns for the analyzed estimation methods.
期刊介绍:
Educational and Psychological Measurement (EPM) publishes referred scholarly work from all academic disciplines interested in the study of measurement theory, problems, and issues. Theoretical articles address new developments and techniques, and applied articles deal with innovation applications.