{"title":"评级量表模型的非迭代条件配对估计。","authors":"Mark Elliott, Paula Buttery","doi":"10.1177/00131644211046253","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate two non-iterative estimation procedures for Rasch models, the pair-wise estimation procedure (PAIR) and the Eigenvector method (EVM), and identify theoretical issues with EVM for rating scale model (RSM) threshold estimation. We develop a new procedure to resolve these issues-the conditional pairwise adjacent thresholds procedure (CPAT)-and test the methods using a large number of simulated datasets to compare the estimates against known generating parameters. We find support for our hypotheses, in particular that EVM threshold estimates suffer from theoretical issues which lead to biased estimates and that CPAT represents a means of resolving these issues. These findings are both statistically significant (<i>p</i> < .001) and of a large effect size. We conclude that CPAT deserves serious consideration as a conditional, computationally efficient approach to Rasch parameter estimation for the RSM. CPAT has particular potential for use in contexts where computational load may be an issue, such as systems with multiple online algorithms and large test banks with sparse data designs.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"82 5","pages":"989-1019"},"PeriodicalIF":2.1000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f6/31/10.1177_00131644211046253.PMC9386884.pdf","citationCount":"0","resultStr":"{\"title\":\"Non-iterative Conditional Pairwise Estimation for the Rating Scale Model.\",\"authors\":\"Mark Elliott, Paula Buttery\",\"doi\":\"10.1177/00131644211046253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigate two non-iterative estimation procedures for Rasch models, the pair-wise estimation procedure (PAIR) and the Eigenvector method (EVM), and identify theoretical issues with EVM for rating scale model (RSM) threshold estimation. We develop a new procedure to resolve these issues-the conditional pairwise adjacent thresholds procedure (CPAT)-and test the methods using a large number of simulated datasets to compare the estimates against known generating parameters. We find support for our hypotheses, in particular that EVM threshold estimates suffer from theoretical issues which lead to biased estimates and that CPAT represents a means of resolving these issues. These findings are both statistically significant (<i>p</i> < .001) and of a large effect size. We conclude that CPAT deserves serious consideration as a conditional, computationally efficient approach to Rasch parameter estimation for the RSM. CPAT has particular potential for use in contexts where computational load may be an issue, such as systems with multiple online algorithms and large test banks with sparse data designs.</p>\",\"PeriodicalId\":11502,\"journal\":{\"name\":\"Educational and Psychological Measurement\",\"volume\":\"82 5\",\"pages\":\"989-1019\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f6/31/10.1177_00131644211046253.PMC9386884.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Educational and Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00131644211046253\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational and Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644211046253","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Non-iterative Conditional Pairwise Estimation for the Rating Scale Model.
We investigate two non-iterative estimation procedures for Rasch models, the pair-wise estimation procedure (PAIR) and the Eigenvector method (EVM), and identify theoretical issues with EVM for rating scale model (RSM) threshold estimation. We develop a new procedure to resolve these issues-the conditional pairwise adjacent thresholds procedure (CPAT)-and test the methods using a large number of simulated datasets to compare the estimates against known generating parameters. We find support for our hypotheses, in particular that EVM threshold estimates suffer from theoretical issues which lead to biased estimates and that CPAT represents a means of resolving these issues. These findings are both statistically significant (p < .001) and of a large effect size. We conclude that CPAT deserves serious consideration as a conditional, computationally efficient approach to Rasch parameter estimation for the RSM. CPAT has particular potential for use in contexts where computational load may be an issue, such as systems with multiple online algorithms and large test banks with sparse data designs.
期刊介绍:
Educational and Psychological Measurement (EPM) publishes referred scholarly work from all academic disciplines interested in the study of measurement theory, problems, and issues. Theoretical articles address new developments and techniques, and applied articles deal with innovation applications.