氨基酰基trna合成酶(AARS)作为被忽视的热带锥虫病-利什曼病、非洲人锥虫病和恰加斯病的一个有吸引力的药物靶点

IF 1.4 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Vikas Kushwaha, Neena Capalash
{"title":"氨基酰基trna合成酶(AARS)作为被忽视的热带锥虫病-利什曼病、非洲人锥虫病和恰加斯病的一个有吸引力的药物靶点","authors":"Vikas Kushwaha,&nbsp;Neena Capalash","doi":"10.1016/j.molbiopara.2022.111510","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>TriTryp diseases (Leishmaniasis, Human African Trypanosomiasis (HAT), and Chagas disease) are devastating parasitic neglected tropical diseases (NTDs) that affect billions of people in developing countries, cause high mortality in humans, and impose a large socio-economic burden. The current treatment options against tritryp diseases are suboptimal and challenging due to the emergence of resistance against available tritryp drugs. Hence, designing and developing effective anti-tritryp drugs with novel targets are required. Aminoacyl-tRNA synthetases (AARSs) involved in specific aminoacylation of transfer RNAs (tRNAs), interrupt </span>protein synthesis through inhibitors, and retard the parasite growth. AaRSs have long been studied as therapeutic targets in bacteria, and three </span>aaRS<span> inhibitors, mupirocin (against IleRS), tavaborole AN2690 (against LeuRS), and halofuginone (against ProRS), are already in clinical practice. The structural differences between tritryp and human aaRSs and the presence of unique sequences (N-terminal domain/C-terminal domain/catalytic domain) make them potential target for developing selective inhibitors. Drugs based on a single aaRS target developed by high-throughput screening (HTS) are less effective due to the emergence of resistance. However, designing multi-targeted drugs may be a better strategy for resistance development. In this perspective, we discuss the characteristics of tritryp aaRSs, sequence conservation in their orthologs and their peculiarities, recent advancements towards the single-target and multi-target aaRS inhibitors developed through rational design.</span></p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":"251 ","pages":"Article 111510"},"PeriodicalIF":1.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Aminoacyl-tRNA synthetase (AARS) as an attractive drug target in neglected tropical trypanosomatid diseases-Leishmaniasis, Human African Trypanosomiasis and Chagas disease\",\"authors\":\"Vikas Kushwaha,&nbsp;Neena Capalash\",\"doi\":\"10.1016/j.molbiopara.2022.111510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>TriTryp diseases (Leishmaniasis, Human African Trypanosomiasis (HAT), and Chagas disease) are devastating parasitic neglected tropical diseases (NTDs) that affect billions of people in developing countries, cause high mortality in humans, and impose a large socio-economic burden. The current treatment options against tritryp diseases are suboptimal and challenging due to the emergence of resistance against available tritryp drugs. Hence, designing and developing effective anti-tritryp drugs with novel targets are required. Aminoacyl-tRNA synthetases (AARSs) involved in specific aminoacylation of transfer RNAs (tRNAs), interrupt </span>protein synthesis through inhibitors, and retard the parasite growth. AaRSs have long been studied as therapeutic targets in bacteria, and three </span>aaRS<span> inhibitors, mupirocin (against IleRS), tavaborole AN2690 (against LeuRS), and halofuginone (against ProRS), are already in clinical practice. The structural differences between tritryp and human aaRSs and the presence of unique sequences (N-terminal domain/C-terminal domain/catalytic domain) make them potential target for developing selective inhibitors. Drugs based on a single aaRS target developed by high-throughput screening (HTS) are less effective due to the emergence of resistance. However, designing multi-targeted drugs may be a better strategy for resistance development. In this perspective, we discuss the characteristics of tritryp aaRSs, sequence conservation in their orthologs and their peculiarities, recent advancements towards the single-target and multi-target aaRS inhibitors developed through rational design.</span></p></div>\",\"PeriodicalId\":18721,\"journal\":{\"name\":\"Molecular and biochemical parasitology\",\"volume\":\"251 \",\"pages\":\"Article 111510\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and biochemical parasitology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166685122000640\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and biochemical parasitology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166685122000640","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

三通病(利什曼病、非洲人类锥虫病和恰加斯病)是毁灭性的被忽视的寄生性热带病,影响发展中国家数十亿人,导致人类高死亡率,并造成巨大的社会经济负担。目前针对tritrip疾病的治疗方案是次优的,并且由于对现有tritrip药物的耐药性的出现而具有挑战性。因此,需要设计和开发具有新靶点的有效抗tritrip药物。氨基酰基- trna合成酶(AARSs)参与转移rna (tRNAs)的特异性氨基酰化,通过抑制剂阻断蛋白质合成,延缓寄生虫生长。长期以来,人们一直在研究aaRS作为细菌的治疗靶点,三种aaRS抑制剂,莫哌罗星(针对IleRS),他伐波罗AN2690(针对LeuRS)和halofuginone(针对ProRS),已经进入临床实践。tritryp与人类aars的结构差异以及独特序列(n端结构域/c端结构域/催化结构域)的存在使它们成为开发选择性抑制剂的潜在靶点。由于耐药性的出现,基于高通量筛选(HTS)开发的单一aaRS靶点的药物效果较差。然而,设计多靶点药物可能是一种更好的耐药性发展策略。在这方面,我们讨论了三tritrip aaRS的特点,序列保守性及其特点,以及通过合理设计开发的单靶点和多靶点aaRS抑制剂的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aminoacyl-tRNA synthetase (AARS) as an attractive drug target in neglected tropical trypanosomatid diseases-Leishmaniasis, Human African Trypanosomiasis and Chagas disease

TriTryp diseases (Leishmaniasis, Human African Trypanosomiasis (HAT), and Chagas disease) are devastating parasitic neglected tropical diseases (NTDs) that affect billions of people in developing countries, cause high mortality in humans, and impose a large socio-economic burden. The current treatment options against tritryp diseases are suboptimal and challenging due to the emergence of resistance against available tritryp drugs. Hence, designing and developing effective anti-tritryp drugs with novel targets are required. Aminoacyl-tRNA synthetases (AARSs) involved in specific aminoacylation of transfer RNAs (tRNAs), interrupt protein synthesis through inhibitors, and retard the parasite growth. AaRSs have long been studied as therapeutic targets in bacteria, and three aaRS inhibitors, mupirocin (against IleRS), tavaborole AN2690 (against LeuRS), and halofuginone (against ProRS), are already in clinical practice. The structural differences between tritryp and human aaRSs and the presence of unique sequences (N-terminal domain/C-terminal domain/catalytic domain) make them potential target for developing selective inhibitors. Drugs based on a single aaRS target developed by high-throughput screening (HTS) are less effective due to the emergence of resistance. However, designing multi-targeted drugs may be a better strategy for resistance development. In this perspective, we discuss the characteristics of tritryp aaRSs, sequence conservation in their orthologs and their peculiarities, recent advancements towards the single-target and multi-target aaRS inhibitors developed through rational design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
51
审稿时长
63 days
期刊介绍: The journal provides a medium for rapid publication of investigations of the molecular biology and biochemistry of parasitic protozoa and helminths and their interactions with both the definitive and intermediate host. The main subject areas covered are: • the structure, biosynthesis, degradation, properties and function of DNA, RNA, proteins, lipids, carbohydrates and small molecular-weight substances • intermediary metabolism and bioenergetics • drug target characterization and the mode of action of antiparasitic drugs • molecular and biochemical aspects of membrane structure and function • host-parasite relationships that focus on the parasite, particularly as related to specific parasite molecules. • analysis of genes and genome structure, function and expression • analysis of variation in parasite populations relevant to genetic exchange, pathogenesis, drug and vaccine target characterization, and drug resistance. • parasite protein trafficking, organelle biogenesis, and cellular structure especially with reference to the roles of specific molecules • parasite programmed cell death, development, and cell division at the molecular level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信